-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathjerry_backtest.py
350 lines (292 loc) · 13.8 KB
/
jerry_backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import pandas as pd
import numpy as np
import talib
import matplotlib.pyplot as plt
import jqdatasdk as jq
import statsmodels.api as sm
import datetime,time
from dateutil import rrule
from dateutil.relativedelta import relativedelta
import investment_science as ins
#from EmQuantAPI import *
#c.start("forcelogin=1")
#选股策略
#计算某月最后一天的函数
def last_day_of_month(any_day):
next_month = any_day.replace(day=28) + datetime.timedelta(days=4) # this will never fail
return next_month - datetime.timedelta(days=next_month.day)
#筛选出符合锐臻指标的股票,并选择上市时间大于两年的股票
'''
d1=datetime.date(2013,11,1)
d2=datetime.date(2019,10,31)
months = rrule.rrule(rrule.MONTHLY, dtstart=d1, until=d2).count()
regent_stock=[[] for i in range(months//3)]
for i in range(months//3):
new_date=d1+relativedelta(months=3*i)
start_date1=new_date.strftime("%Y-%m-%d")
report_date=last_day_of_month(new_date-relativedelta(months=2))
report_date1=report_date.strftime("%Y-%m-%d")
twoyears=relativedelta(years=2)
test_month_head=(new_date-relativedelta(months=1)).strftime("%Y-%m-%d")
test_month_tail=last_day_of_month(new_date-relativedelta(months=1)).strftime("%Y-%m-%d")
#字符串内拼接变量用“++”
regent_index = c.cps("B_001004","HOLDFUNDNUM,HOLDFUNDNUM,"+report_date1+",1;STMTHOLDTNUM,STMTHOLDTNUM,"+report_date1+"","([HOLDFUNDNUM] / [STMTHOLDTNUM])<1 ","top=max([HOLDFUNDNUM] / [STMTHOLDTNUM],50),sectordate="+start_date1+"")
IPOdate=c.css(regent_index.Codes,"LISTDATE","")
for code,date in IPOdate.Data.items():
date1="".join(date)
time_tuple = time.strptime(date1, '%Y/%m/%d')
year, month, day = time_tuple[:3]
date2 = datetime.date(year, month, day)
if date2 < new_date-twoyears:
regent_stock[i].append(code)
changePercentage_stock=c.csd(regent_stock[i],"PCTCHANGE",test_month_head,test_month_tail,"period=3,adjustflag=3,curtype=1,order=1,market=CNSESH")
changePercentage_index=c.csd("000300.SH","PCTCHANGE",test_month_head,test_month_tail,"period=3,adjustflag=3,curtype=1,order=1,market=CNSESH")
for a,b in changePercentage_index.Data.items():
benchmark="".join('%s'% x for x in b[0])
benchmark1=float(benchmark)
for code,change in changePercentage_stock.Data.items():
changepercentage=''.join('%s'% change[0][0])
if changepercentage=='None':
regent_stock[i].remove(code)
continue
else:
changepercentage1=float(changepercentage)
if changepercentage1-benchmark1<-7:
regent_stock[i].remove(code)
All_dates=[] #包含全部报告日期的列表
for i in range(months//3):
new_Date=(last_day_of_month(d1+relativedelta(months=3*i-2))).strftime("%Y-%m-%d")
All_dates.append(new_Date)
waiting_list=[[] for i in range(months//3)]#初筛后指标排序
for j in range(len(regent_stock)):
holding=c.css(regent_stock[j],"STMTHOLDTNUM,HOLDFUNDNUM","ReportDate=%s,CapitalType=1"%All_dates[j]).Data
for m,n in holding.items():
rate=n[1]/n[0]
n.append(rate)
holding=sorted(holding.items(),key=lambda x :x[1][2] ,reverse=True)
for y in range(len(holding)):
waiting_list[j].append(holding[y][0])
#每期留下排名前十只股票
regent_stock1=[[] for i in range(months//3)]
for i in range(len(waiting_list)):
regent_stock1[i]=waiting_list[i][:10]
'''
#买入策略
def average_position(data,stock_list,risk_free):
OPEN=stock_panel['OPEN']
close=stock_panel['CLOSE']
signal = close.copy()
signal[signal!=0]=0
time1=datetime.date(2013,11,1)
total_balance=10000000
#first change set a change day
for i in range(months//3): #tiaocang cishu
new_Date=time1+relativedelta(months=3*i) #tiaocang ri
total_stock=0
flag = 0
excess_return = close[stock_list[10*i:10*(i+1)]]
for stock in stock_list[10*i:10*(i+1)]:
len = close[stock].shape[0]
r_stock = np.log(np.array(close[stock].iloc[1:len])/np.array(close[stock].iloc[0:len-1]))
r_stock.append(r_stock[-1])
excess_return[stock] = r_stock-risk_free
excess_return = excess_return[excess_return.index<=new_Date]
j=-1 #the jth stock in allocation
allocation = ins.mle(5,excess_return)
w0 = 1-sum(allocation)
month_riskfree = 0.002
cash = w0*total_balance*(1+month_riskfree)
for stock in stock_list[10*i:10*(i+1)]:
j+=1
for x in pre_dict.Dates: #all trade day
x1=datetime.datetime.strptime(x,"%Y/%m/%d").date()
if flag==0 and x1 >= new_Date: #this day is change day
year = str(int(x1.strftime('%Y')))
month = str(int(x1.strftime('%m')))
day = str(int(x1.strftime('%d')))
trade_day=year+'/'+month+'/'+day #set change day
flag = 1
if x1>=new_Date and x1<new_Date+relativedelta(months=3):
signal[stock][x]=(total_balance*allocation[j])//OPEN[stock][trade_day]
if x1>=new_Date+relativedelta(months=3): #next tiaocang ri
last_day=pre_dict.Dates[pre_dict.Dates.index(x)-1]
value_i=total_balance*allocation[j]//OPEN[stock][trade_day]*close[stock][x]
total_stock=value_i+total_stock
break
total_balance=total_stock+cash
return signal
'''
def double_ma(data,stock_list,fast_window,slow_window):
#signal = [long=+1/short=-1,amount]
close=data['close']
signal = close.copy()
for stock in stock_list:
fm = talib.SMA(close[stock],fast_window)
sm = talib.SMA(close[stock],slow_window)
nan = np.isnan(sm)
for i in range(0,np.size(fm)):
if(nan[i]==True):
signal[stock][i]=0
else:
if(fm[i]>sm[i]):
signal[stock][i]=1
else:
signal[stock][i]=-1
return signal
'''
def pick_stock():
stock_pool=[y for x in regent_stock1 for y in x]
return stock_pool
'''
#面板数据输出
nonRedundant=list(set([y for x in regent_stock1 for y in x]))
pre_dict=c.csd(nonRedundant,"OPEN,CLOSE","2013-11-01","2019-10-31","period=1,adjustflag=3,curtype=1,order=1,market=CNSESH")
open_dict=dict()
for k in pre_dict.Data:
tmp=[]
for i in range(len(pre_dict.Dates)):
tmp.append(pre_dict.Data[k][0][i])
open_dict[k]=tmp
close_dict=dict()
for k in pre_dict.Data:
tmp=[]
for i in range(len(pre_dict.Dates)):
tmp.append(pre_dict.Data[k][1][i])
close_dict[k]=tmp
df_open=pd.DataFrame(pre_dict.Dates)
for k in open_dict:
df_open.insert(1,k,open_dict[k])
df_open=df_open.set_index([0])
dict_oc=dict()
dict_oc['OPEN']=df_open
df_close=pd.DataFrame(pre_dict.Dates)
for k in close_dict:
df_close.insert(1,k,close_dict[k])
df_close=df_close.set_index([0])
dict_oc['CLOSE']=df_close
stock_panel=pd.Panel(dict_oc)
'''
class BacktestEngine(object):
"""
This class is used to read data,
process data to standard form.
"""
def __init__(self,start_date,end_date):
self.start_date = start_date
self.end_date = end_date
self.stock_list = pick_stock()
self.data = self.load_data()
self.close = self.data['CLOSE']
self.open = self.data['OPEN']
self.len = np.size(self.close[self.stock_list[0]]) #len is the total trade day
'''it is cash (column=0) and balance (column = 1)'''
self.trade_log = np.empty([self.len,2])
self.trade_log[0] = [10000000,10000000]
'''it is record the share that we hold'''
self.share_log = pd.DataFrame(np.empty([self.len,len(self.nonredundant)]),columns=self.nonredundant)
for stock in self.nonredundant:
self.share_log[stock][0]=0
q = query(macro.MAC_LEND_RATE).filter(macro.MAC_LEND_RATE.currency_id==1,macro.MAC_LEND_RATE.market_id==5,macro.MAC_LEND_RATE.term_id==20,macro.MAC_LEND_RATE.day>=self.start_date,macro.MAC_LEND_RATE.day<=self.end_date)
tmp = macro.run_query(q)
tmp = tmp.sort_values(by='day')
i, j = 0, 0
self.rf = np.zeros(self.len-1)
while i<self.len-1 and j<len(tmp['day']):
day = pd.to_datetime(tmp['day'].iloc[j])
if(day==self.close.index[i]):
self.rf[i] = tmp['interest_rate'].iloc[j]/360/100
i+=1
j+=1
last = tmp['interest_rate'].iloc[j]/360
elif(day<self.close.index[i]):
self.rf[i] = tmp['interest_rate'].iloc[j]/360/100
j+=1
elif(day>self.close.index[i]):
self.rf[i] = tmp['interest_rate'].iloc[j]/360/100
i+=1
if(i!=self.len):
while i < self.len-1:
self.rf[i] = last
i+=1
def load_data(self):
jq.auth("15825675534",'Programming123')
self.nonredundant=list(set(self.stock_list))
return stock_panel
#return jq.get_price(security=self.stock_list,start_date=self.start_date,end_date=self.end_date)
def load_strategy(self, strategy_name):
self.strategy_name = strategy_name
self.signal = strategy_name(self.data,self.stock_list,self.rf)
def run(self,fee):
'''if we have a signal in day i, then we will execute it at day i+1 '''
for i in range(0,self.len-1):
total_stock_value = 0 #record total cost in stock
if(self.trade_log[i][1]<0): #if the balance is less than 0, we bankrupt
self.trade_log[i+1]=self.trade_log[i]
self.share_log.iloc[i+1]=self.share_log.iloc[i]
continue;
self.trade_log[i+1]=self.trade_log[i] #first copy day i's situation
self.signal.iloc[0]=0
money_to_trade = (self.signal.iloc[i+1]-self.signal.iloc[i])*self.open.iloc[i+1]
money_to_trade[np.isnan(money_to_trade)]=0
transaction_fee = sum(abs(money_to_trade))*fee
total=sum(money_to_trade)
self.trade_log[i+1][0]=self.trade_log[i+1][0]-total-transaction_fee
today_signal = self.signal.iloc[i+1]
today_price = self.close.iloc[i+1]
today_value = today_signal*today_price
today_value[np.isnan(today_value)]=0
total_stock_value = sum(today_value)
self.trade_log[i+1][1]=self.trade_log[i+1][0] + total_stock_value #balance = cash + value of stocks
def prints(self):
r_strategy = np.log(np.array(self.trade_log[1:self.len,1])/np.array(self.trade_log[0:self.len-1,1])) #strategy return rate
hs300 = jq.get_price('000300.XSHG',start_date=self.start_date, end_date=self.end_date,fields = ('close','pre_close'))
r_m = np.log(np.array(hs300.close)/np.array(hs300.pre_close)) #market return rate
r_m = np.delete(r_m,0)
return_period = sum(r_strategy) #total return rate
x,y = r_m-self.rf,r_strategy-self.rf #excess return rate
x = x.reshape(len(x),1)
c = np.ones((len(x),1))
X = np.hstack((c,x))
'''CAPM model'''
res = (sm.OLS(y,X)).fit()
alpha, beta = res.params[0], res.params[1]
vol = np.std(r_strategy)
loss_rate = len(r_strategy[r_strategy<0])/len(r_strategy)
loss_ave = r_strategy[r_strategy<0].mean()
sharpe_ratio = (r_strategy.mean()-self.rf.mean())/vol*(360**0.5) #360 suitable?
performance_strategy = {'阶段收益率:':return_period,'詹森系数(alpha):':alpha,'beta:':beta,'波动率:':vol,'亏损比例:':loss_rate,'平均亏损:':loss_ave,
'Sharpe比率:':sharpe_ratio}
print(performance_strategy)
def c_sharpe(self):
r_strategy = np.log(np.array(self.trade_log[1:self.len,1])/np.array(self.trade_log[0:self.len-1,1]))
return_period = sum(r_strategy)
vol = np.std(r_strategy)
sr = (r_strategy.mean()-self.rf.mean())/vol*(360**0.5)
return sr
def show(self):
x = self.close.index
y = self.trade_log[:,1]
plt.plot(x,y)
plt.show()
'''parameter optimazation'''
def optimaze(self, p1_min, p1_max, p1_step, p2_min, p2_max, p2_step):
max_sr = 0
res = [p1_min,p2_min]
for i in range(p1_min,p1_max+1,p1_step):
for j in range(p2_min,p2_max+1,p2_step):
parameters = [i,j]
self.load_strategy(self.strategy_name,parameters)
self.run()
sr = self.c_sharpe()
if sr > max_sr:
res[0], res[1] = i, j
max_sr = sr
print("Optimazation Parameters are:",res)
if __name__ == '__main__':
start_date, end_date = '2013-11-01', '2019-10-31' #set start time and end time
Backtester = BacktestEngine(start_date,end_date)
Backtester.load_strategy(average_position); #load strategy to create trade signal
fee = 0.0001
Backtester.run(fee); #using signal to create trade log
Backtester.prints(); #calculate statistics and print it
Backtester.show(); #draw our pnl curve