-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_recognizer.py
113 lines (95 loc) · 3.31 KB
/
text_recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import cv2
import pytesseract
from pytesseract import Output
from .image_processor import NPImage
TESSERACT_EXE_PATH = 'C:/Program Files/Tesseract-OCR/tesseract.exe'
pytesseract.pytesseract.tesseract_cmd = TESSERACT_EXE_PATH
def text_recognize(frame, target = 'chi_tra+eng', min_conf = None):
image = NPImage(frame)
image.cvt_rgb()
if isinstance(target, list):
target = '+'.join(target)
if not min_conf:
result = pytesseract.image_to_string(image.frame,
lang = target, config = '--psm 3')
return result.split('\n')
elif isinstance(min_conf, (int, float)):
data = pytesseract.image_to_data(image.frame,
lang = target, config = '--psm 3', output_type = Output.DICT)
for i in range(len(data['text'])):
text = data['text'][i]
conf = int(data['conf'][i])
if conf >= min_conf: result.append(text)
return result
return None
def digit_recognize(frame):
image = NPImage(frame.copy())
image.cvt_rgb()
image.blur()
image.threshold()
image.dilate(nIter = 5)
image.erode(nIter = 5)
image.cvt_gray()
gray = image.frame.copy()
cnts = []
image.canny(lower = 50, upper = 200, edges = 255)
contours, _ = cv2.findContours(image.frame,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
area = cv2.contourArea(cnt)
if 500 <= area <= 5000: cnts.append(cnt)
DIGITS_LOOKUP = {
(1, 1, 1, 0, 1, 1, 1): 0,
(0, 0, 1, 0, 0, 1, 0): 1,
(1, 0, 1, 1, 1, 1, 0): 2,
(1, 0, 1, 1, 0, 1, 1): 3,
(0, 1, 1, 1, 0, 1, 0): 4,
(1, 1, 0, 1, 0, 1, 1): 5,
(1, 1, 0, 1, 1, 1, 1): 6,
(1, 0, 1, 0, 0, 1, 0): 7,
(1, 1, 1, 1, 1, 1, 1): 8,
(1, 1, 1, 1, 0, 1, 1): 9
}
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, np.ones((3, 3), np.uint8))
digits = []
for i, c in enumerate(cnts):
# extract the digit ROI
(x, y, w, h) = cv2.boundingRect(c)
roi = thresh[y:y + h, x:x + w]
roi = cv2.morphologyEx(roi, cv2.MORPH_OPEN, np.ones((3, 3), np.uint8))
roi = cv2.dilate(roi, np.ones((3, 3), np.uint8), iterations = 1)
# compute the width and height of each of the 7 segments
# we are going to examine
(roiH, roiW) = roi.shape
(dW, dH) = (int(roiW * 0.25), int(roiH * 0.15))
dHC = int(roiH * 0.05)
# define the set of 7 segments
segments = [
((0, 0), (w, dH)), # top
((0, 0), (dW, h // 2)), # top-left
((w - dW, 0), (w, h // 2)), # top-right
((0, (h // 2) - dHC) , (w, (h // 2) + dHC)), # center
((0, h // 2), (dW, h)), # bottom-left
((w - dW, h // 2), (w, h)), # bottom-right
((0, h - dH), (w, h)) # bottom
]
on = [0] * len(segments)
for (i, ((xA, yA), (xB, yB))) in enumerate(segments):
# extract the segment ROI, count the total number of
# thresholded pixels in the segment, and then compute
# the area of the segment
segROI = roi[yA:yB, xA:xB]
total = cv2.countNonZero(segROI)
area = (xB - xA) * (yB - yA)
# if the total number of non-zero pixels is greater than
# 50% of the area, mark the segment as "on"
if total / float(area) > 0.5:
on[i]= 1
# lookup the digit and draw it on the image
try:
digit = DIGITS_LOOKUP[tuple(on)]
except KeyError:
continue
digits.append(digit)
return digits