-
Notifications
You must be signed in to change notification settings - Fork 88
/
train.py
146 lines (143 loc) · 8.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import tools.find_mxnet
import mxnet as mx
import os
import sys
from train.train_net import train_net
def parse_args():
parser = argparse.ArgumentParser(description='Train a Single-shot detection network')
parser.add_argument('--train-path', dest='train_path', help='train record to use',
default=os.path.join(os.getcwd(), 'data', 'train.rec'), type=str)
parser.add_argument('--train-list', dest='train_list', help='train list to use',
default="", type=str)
parser.add_argument('--val-path', dest='val_path', help='validation record to use',
default=os.path.join(os.getcwd(), 'data', 'val.rec'), type=str)
parser.add_argument('--val-list', dest='val_list', help='validation list to use',
default="", type=str)
parser.add_argument('--network', dest='network', type=str, default='darknet19_yolo',
help='which network to use')
parser.add_argument('--batch-size', dest='batch_size', type=int, default=64,
help='training batch size')
parser.add_argument('--resume', dest='resume', type=int, default=-1,
help='resume training from epoch n')
parser.add_argument('--finetune', dest='finetune', type=int, default=-1,
help='finetune from epoch n, rename the model before doing this')
parser.add_argument('--pretrained', dest='pretrained', help='pretrained model prefix',
default=os.path.join(os.getcwd(), 'model', 'darknet19'), type=str)
parser.add_argument('--epoch', dest='epoch', help='epoch of pretrained model',
default=0, type=int)
parser.add_argument('--prefix', dest='prefix', help='new model prefix',
default=os.path.join(os.getcwd(), 'model', 'yolo2'), type=str)
parser.add_argument('--gpus', dest='gpus', help='GPU devices to train with',
default='0', type=str)
parser.add_argument('--begin-epoch', dest='begin_epoch', help='begin epoch of training',
default=0, type=int)
parser.add_argument('--end-epoch', dest='end_epoch', help='end epoch of training',
default=240, type=int)
parser.add_argument('--frequent', dest='frequent', help='frequency of logging',
default=20, type=int)
parser.add_argument('--data-shape', dest='data_shape', type=int, default=416,
help='set image shape')
parser.add_argument('--random-shape-step', dest='random_shape_step', type=int,
default=32, help='random data shape step')
parser.add_argument('--random-shape-epoch', dest='random_shape_epoch', type=int,
default=10, help='random shape epoch')
parser.add_argument('--min-random-shape', dest='min_random_shape', type=int,
default=320, help='minimum random data shape')
parser.add_argument('--max-random-shape', dest='max_random_shape', type=int,
default=608, help='maximum random data shape')
parser.add_argument('--label-width', dest='label_width', type=int, default=350,
help='force padding label width to sync across train and validation')
parser.add_argument('--lr', dest='learning_rate', type=float, default=0.001,
help='learning rate')
parser.add_argument('--momentum', dest='momentum', type=float, default=0.9,
help='momentum')
parser.add_argument('--wd', dest='weight_decay', type=float, default=0.0005,
help='weight decay')
parser.add_argument('--mean-r', dest='mean_r', type=float, default=123.68,
help='red mean value')
parser.add_argument('--mean-g', dest='mean_g', type=float, default=116.779,
help='green mean value')
parser.add_argument('--mean-b', dest='mean_b', type=float, default=103.939,
help='blue mean value')
parser.add_argument('--lr-steps', dest='lr_refactor_step', type=str, default='90, 180',
help='refactor learning rate at specified epochs')
parser.add_argument('--lr-factor', dest='lr_refactor_ratio', type=float, default=.1,
help='ratio to refactor learning rate')
parser.add_argument('--freeze', dest='freeze_pattern', type=str, default="",
help='freeze layer pattern')
parser.add_argument('--log', dest='log_file', type=str, default="train.log",
help='save training log to file')
parser.add_argument('--monitor', dest='monitor', type=int, default=0,
help='log network parameters every N iters if larger than 0')
parser.add_argument('--pattern', dest='monitor_pattern', type=str, default=".*",
help='monitor parameter pattern, as regex')
parser.add_argument('--num-class', dest='num_class', type=int, default=20,
help='number of classes')
parser.add_argument('--num-example', dest='num_example', type=int, default=16551,
help='number of image examples')
parser.add_argument('--class-names', dest='class_names', type=str,
default='aeroplane, bicycle, bird, boat, bottle, bus, \
car, cat, chair, cow, diningtable, dog, horse, motorbike, \
person, pottedplant, sheep, sofa, train, tvmonitor',
help='string of comma separated names, or text filename')
parser.add_argument('--nms', dest='nms_thresh', type=float, default=0.45,
help='non-maximum suppression threshold')
parser.add_argument('--overlap', dest='overlap_thresh', type=float, default=0.5,
help='evaluation overlap threshold')
parser.add_argument('--force', dest='force_nms', type=bool, default=False,
help='force non-maximum suppression on different class')
parser.add_argument('--use-difficult', dest='use_difficult', type=bool, default=False,
help='use difficult ground-truths in evaluation')
parser.add_argument('--voc07', dest='use_voc07_metric', type=bool, default=True,
help='use PASCAL VOC 07 11-point metric')
args = parser.parse_args()
return args
def parse_class_names(args):
""" parse # classes and class_names if applicable """
num_class = args.num_class
if len(args.class_names) > 0:
if os.path.isfile(args.class_names):
# try to open it to read class names
with open(args.class_names, 'r') as f:
class_names = [l.strip() for l in f.readlines()]
else:
class_names = [c.strip() for c in args.class_names.split(',')]
assert len(class_names) == num_class, str(len(class_names))
for name in class_names:
assert len(name) > 0
else:
class_names = None
return class_names
if __name__ == '__main__':
args = parse_args()
# context list
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]
ctx = [mx.cpu()] if not ctx else ctx
# ctx = [mx.cpu()]
# class names if applicable
class_names = parse_class_names(args)
# start training
train_net(args.network, args.train_path,
args.num_class, args.batch_size,
args.data_shape, [args.mean_r, args.mean_g, args.mean_b],
args.resume, args.finetune, args.pretrained,
args.epoch, args.prefix, ctx, args.begin_epoch, args.end_epoch,
args.frequent, args.learning_rate, args.momentum, args.weight_decay,
args.lr_refactor_step, args.lr_refactor_ratio,
val_path=args.val_path,
num_example=args.num_example,
class_names=class_names,
label_pad_width=args.label_width,
freeze_layer_pattern=args.freeze_pattern,
iter_monitor=args.monitor,
monitor_pattern=args.monitor_pattern,
log_file=args.log_file,
nms_thresh=args.nms_thresh,
force_nms=args.force_nms,
ovp_thresh=args.overlap_thresh,
use_difficult=args.use_difficult,
voc07_metric=args.use_voc07_metric,
random_shape_step=args.random_shape_step,
shape_range=(args.min_random_shape, args.max_random_shape),
random_shape_epoch=args.random_shape_epoch)