Skip to content

Commit 0b0530b

Browse files
committed
πŸ„πŸ’©
1 parent 16df1fd commit 0b0530b

9 files changed

+182
-6
lines changed

β€ŽECE20001/ECE20001.pdf

2 Bytes
Binary file not shown.

β€ŽECE20001/ECE20001.tex

+1-1
Original file line numberDiff line numberDiff line change
@@ -2328,6 +2328,6 @@ \section{MOSFET amplifiers}
23282328
condition. If we require distortion to be less than 10\% of the signal,
23292329
then we need $V_G < 0.2(V_G-V_T)$.
23302330

2331-
The small-signal gain of a MOSFET common source amplfier is
2331+
The small-signal gain of a MOSFET common source amplifier is
23322332
\[A = -R_Dk(V_G-V_T)=-g_m R_D.\]
23332333
\end{document}

β€ŽECE20002/ECE20002.pdf

518 KB
Binary file not shown.

β€ŽECE20002/ECE20002.tex

+181-5
Original file line numberDiff line numberDiff line change
@@ -113,6 +113,7 @@ \section{Course Introduction}
113113

114114
\section{Field-Effect Transistor Devices}
115115

116+
\subsection{MOSFETs}
116117
Let us begin where ECE 20001 ended, with metal-oxide semiconductor
117118
field-effect transistors (MOSFETs). The rectangle below represent
118119
a wafer of silicon. The p - Si label indicates that the
@@ -199,7 +200,7 @@ \section{Field-Effect Transistor Devices}
199200
\end{figure}
200201
In this case the primary current carrier will be holes.
201202

202-
In the case of the nMOSFET in figure \ref{nMOSFET diagram},
203+
In the case of the nMOSFET in figure \ref{fig:nMOSFET diagram},
203204
a negative gate voltage will attract holes in the
204205
semiconductor, forming two oppositely charged areas separated
205206
by a distance $x$. This establishes an electric field
@@ -220,15 +221,15 @@ \section{Field-Effect Transistor Devices}
220221
If $0 < V_T < v_{GS}$, then $C=f{\omega}$, where $\omega$ is
221222
the frequency of our probe.
222223

223-
Figure \ref{p-type MOS C-V} displays the
224+
Figure \ref{fig:p-type MOS C-V} displays the
224225
capacitance-voltage graph of a p-type metal-oxide
225226
semiconductor. The capacitance is constant when
226227
gate voltage is negative, then falls at the \emph{flat-band voltage}
227228
$V_{GS} = 0V$, then rapidly rises again after the threshold voltage
228229
is reached.
229230
\begin{figure}
230-
\caption{p-type MOS Capacitance-Voltage Characteristic}
231-
\label{p-type MOS C-V}
231+
\caption{p-type MOS capacitance-voltage characteristic}
232+
\label{fig:p-type MOS C-V}
232233
\includegraphics{moscv.png}
233234
\end{figure}
234235

@@ -259,7 +260,7 @@ \section{Field-Effect Transistor Devices}
259260
flows constantly for all drain voltage above saturation, however.
260261
Before saturation is reached and after the gate voltage is above the threshold,
261262
we are in the triode region. In the triode region, the current is given by
262-
\begin{equation}
263+
\begin{equation} \label{eq:triode current}
263264
i_{D(triode)} = \mu C_{ox} \frac{W}{L} ((v_{GS}-V_T)v_{DS}-\frac{v^2_{DS}}{2})
264265
\end{equation}
265266
Sometimes, the constant terms are wrapped up into
@@ -279,4 +280,179 @@ \section{Field-Effect Transistor Devices}
279280
&= \frac{1}{\mu C_{ox} \frac{W}{L} (v_{GS} - V_T)}
280281
\end{align}
281282

283+
Figure \ref{fig:Transfer Characteristics} shows a family of $i_D$-$v_{DS}$
284+
curves with differing values of $v_{GS}$.
285+
\begin{figure}
286+
\caption{Transfer characteristics of nMOSFETs}
287+
\label{fig:Transfer Characteristics}
288+
\includegraphics{Transfer Characteristics.png}
289+
\end{figure}
290+
Also show as a dashed green line is the saturation current
291+
as a function of gate voltage. Let's look at the impact
292+
the threshold voltage has by plotting the $i_D$-$v_{GS}$ curve
293+
for differing values of $V_T$ in figure \ref{fig:idvgsvt}.
294+
\begin{figure}
295+
\caption{$i_D$-$v_{GS}$ curve for select values of $V_T$}
296+
\label{fig:idvgsvt}
297+
\includegraphics{idvgsvt.png}
298+
\end{figure}
299+
Now the green dashed curve corresponds to a threshold voltage of zero.
300+
Recall that the threshold voltage is intrinsic to
301+
the semiconductor wafer. Doping variations, defect, and shape can
302+
all affect the threshold voltage. If we build a depletion-mode nMOSFET,
303+
then we allow for negative threshold voltages.
304+
305+
A normally off like in figure \ref{fig:nMOSFET diagram}
306+
has the symbol shown in \ref{fig:nMOSFET schematic} and
307+
is said to be in enhancement mode.
308+
\begin{figure}
309+
\caption{nMOSFET schematic}
310+
\label{fig:nMOSFET schematic}
311+
\begin{center}
312+
\begin{circuitikz}
313+
\draw (0,0) node[nmos] (mosfet) {};
314+
\draw (mosfet.D) -- ++(0,-0.5) node[vdd] {$V_{D}$};
315+
\draw (mosfet.S) -- ++(0,0.5) node[right] {$V_S$};
316+
\draw (mosfet.G) -- ++(-0.5,0) node[left] {$V_{GS}$};
317+
\end{circuitikz}
318+
\end{center}
319+
\end{figure}
320+
If the nMOSFET has an n-channel between the source and
321+
drain, as shown in figure \ref{fig:nMOSFET diagram on},
322+
\begin{figure}
323+
\caption{ Normally on nMOSFET diagram}
324+
\label{fig:nMOSFET diagram on}
325+
\begin{center}
326+
\begin{circuitikz}
327+
\draw (0,0)
328+
to (4,0)
329+
to (4,2)
330+
to (0,2)
331+
to (0,0);
332+
\node at (2,1) {p - Si};
333+
\draw (2,0) to (2,-0.25) node[ground]{};
334+
335+
\draw (0.5, 2) rectangle node {$n^+$} (1.5,1.65);
336+
\draw (2.5, 2) rectangle node {$n^+$} (3.5,1.65);
337+
338+
\draw[fill=gray] (0,2) rectangle (0.5,2.25);
339+
\draw[fill=gray] (1.5,2) rectangle (2.5,2.25);
340+
\draw[fill=gray] (3.5,2) rectangle (4,2.25);
341+
342+
\draw[fill=black] (0.5, 2) rectangle (1.5,2.125);
343+
\draw[fill=black] (1.5,2.25) rectangle (2.5,2.375);
344+
\draw[fill=black] (2.5, 2) rectangle (3.5,2.125);
345+
346+
\draw (1, 2) to[short, -*] (1, 3) node[above] {Source}
347+
to (0.5, 3);
348+
\draw (2, 2.25) to[short, -*] (2, 3.25) node[above] {Gate, $v_{GS}(v_G)$};
349+
\draw (3, 2) to[short, -*] (3, 3) node[right] {Drain, $v_{DS}(v_D)$};
350+
351+
\draw[fill=green] (1.5, 2) rectangle (2.5, 1.75) node[below] {n-channel};
352+
\end{circuitikz}
353+
\end{center}
354+
\end{figure}
355+
then it is normally on and its symbol is as seen in
356+
figure \ref{fig:nMOSFET on schematic}. This kind of nMOSFET
357+
is said to be in depletion mode.
358+
\begin{figure}
359+
\caption{Schematic of normally on nMOSFET}
360+
\label{fig:nMOSFET on schematic}
361+
\begin{center}
362+
\begin{circuitikz}
363+
\draw (0,0) node[nmos] (mosfet) {};
364+
\draw (mosfet.D) -- ++(0,-0.5) node[vdd] {$V_{D}$};
365+
\draw (mosfet.S) -- ++(0,0.5) node[right] {$V_S$};
366+
\draw (mosfet.G) -- ++(-0.5,0) node[left] {$V_{GS}$};
367+
\draw[fill=black] (-0.5, -0.25) rectangle (-0.425, 0.25);
368+
\end{circuitikz}
369+
\end{center}
370+
\end{figure}
371+
Note the thicker line between source and drain representing
372+
the n-channel.
373+
374+
Similarly, the pMOSFET shown in figure \ref{fig:pMOSFET} is
375+
a normally off, enhancement mode pMOSFET. A pMOSFET with a
376+
p-channel is normally on and in depletion mode.
377+
378+
Let's look at the transfer characteristics of
379+
the different types of MOSFETs. figure \ref{fig:Transfer Characteristics}
380+
shows these characteristics for a normally off, enhancement mode
381+
nMOSFET.
382+
For a normally on, depletion mode nMOSFET the graph is exactly
383+
the same, except that the current can flow even when the
384+
gate bias is zero since the fabricated channel allows
385+
the flow of electrons from source to drain.
386+
The output characteristics for a normally off, enhancement mode pMOSFET
387+
are shown in figure \ref{fig:idvgsvt pmosfet}.
388+
\begin{figure}
389+
\caption{$i_D$-$v_{DS}$ curve for select values of $v_{GS}-V_T$}
390+
\label{fig:idvgsvt pmosfet}
391+
\includegraphics{output characteristics pmosfet.png}
392+
\end{figure}
393+
A negative bias on the gate will induce a channel of positive holes
394+
in the semiconductor, making the threshold voltage for a pMOSFET
395+
negative. Again, the normally on depletion mode pMOSFET graph has the same
396+
shape, but since there is an existing channel for current it will flow even for
397+
some positive values of $v_{GS}$. We need to deplete the channel by pushing away all
398+
the holes in it with the bias on the gate in order to turn it off.
399+
400+
To review, there for four kinds of MOSFETs in which we are interested:
401+
\begin{itemize}
402+
\item normally off, enhancement mode nMOSFETs
403+
\item normally on, depletion mode nMOSFETs
404+
\item normally off, enhancement mode pMOSFETs
405+
\item normally on, depletion mode pMOSFETs
406+
\end{itemize}
407+
408+
\subsection{Transconductance}
409+
410+
Now, let us move on the the topic of transconductance.
411+
In the triode region, the transconductance is defined as
412+
\begin{equation} \label{eq:g_m}
413+
g_m = \frac{i_D}{v_{GS}} \rvert_{Q_{pt}}
414+
\end{equation}
415+
where
416+
\begin{equation}
417+
Q_{pt} = (I_D, V_{DS}).
418+
\end{equation}
419+
If we recall equation \ref{eq:triode current}, and substitute
420+
for $i_D$ in equation \ref{eq:g_d}, then we obtain
421+
\begin{align}
422+
g_m &= \mu C_{ox} \frac{W}{L} v_{DS} \\
423+
&= \frac{i_{D(triode)}}{(v_{GS}-v_T)-\frac{v_{DS}}{2}}
424+
\end{align}
425+
426+
In the saturation region,
427+
\begin{equation}
428+
g_m = \frac{di_D}{dv_{GS}} \rvert_{Q_{pt}}
429+
\end{equation}
430+
and
431+
\begin{equation}
432+
i_{D(sat)} = \mu C_{ox} \frac{W}{L} \frac{(v_{GS}-V_T)^2}{2}.
433+
\end{equation}
434+
Again combining these two equations,
435+
\begin{align}
436+
g_m &= \mu C_{ox} \frac{W}{L}(v_{GS} - V_T) \\
437+
&= \frac{2i_{D(sat)}}{(v_{GS}-V_T)}
438+
\end{align}
439+
The larger the transconductance, the larger
440+
the gain of an amplifier circuit
441+
that uses the transistor.
442+
443+
By adjusting the voltage of the drain, we
444+
can modulate the channel length. Specifically,
445+
\begin{align}
446+
i_{D(sat)} &\propto \frac{1}{L-\Delta L} \\
447+
&\equiv \frac{1}{L}\left(1 + \frac{\Delta L}{L}\right).
448+
\end{align}
449+
And
450+
\begin{equation}
451+
\Delta L \propto (v_{DS} - v_{DS(sat)})
452+
\end{equation}
453+
means that
454+
\begin{equation}
455+
i_{D(sat)} = \frac{1}{2} \mu C_{ox} \frac{W}{L} (v_{GS}-V_T)^2 \left[1 + \lambda(v_{DS}-v_{DS(sat)})\right]
456+
\end{equation}
457+
where $\lambda$ is the channel length modulation parameter.
282458
\end{document}
Loading

β€ŽECE20002/images/idvgsvt.png

149 KB
Loading

β€ŽECE20002/images/moscv.jpg

-47.6 KB
Binary file not shown.

β€ŽECE20002/images/moscv.xcf

-317 KB
Binary file not shown.
Loading

0 commit comments

Comments
Β (0)