@@ -113,6 +113,7 @@ \section{Course Introduction}
113
113
114
114
\section {Field-Effect Transistor Devices }
115
115
116
+ \subsection {MOSFETs }
116
117
Let us begin where ECE 20001 ended, with metal-oxide semiconductor
117
118
field-effect transistors (MOSFETs). The rectangle below represent
118
119
a wafer of silicon. The p - Si label indicates that the
@@ -199,7 +200,7 @@ \section{Field-Effect Transistor Devices}
199
200
\end {figure }
200
201
In this case the primary current carrier will be holes.
201
202
202
- In the case of the nMOSFET in figure \ref {nMOSFET diagram },
203
+ In the case of the nMOSFET in figure \ref {fig: nMOSFET diagram },
203
204
a negative gate voltage will attract holes in the
204
205
semiconductor, forming two oppositely charged areas separated
205
206
by a distance $ x$ . This establishes an electric field
@@ -220,15 +221,15 @@ \section{Field-Effect Transistor Devices}
220
221
If $ 0 < V_T < v_{GS}$ , then $ C=f{\omega }$ , where $ \omega $ is
221
222
the frequency of our probe.
222
223
223
- Figure \ref {p-type MOS C-V } displays the
224
+ Figure \ref {fig: p-type MOS C-V } displays the
224
225
capacitance-voltage graph of a p-type metal-oxide
225
226
semiconductor. The capacitance is constant when
226
227
gate voltage is negative, then falls at the \emph {flat-band voltage }
227
228
$ V_{GS} = 0 V$ , then rapidly rises again after the threshold voltage
228
229
is reached.
229
230
\begin {figure }
230
- \caption {p-type MOS Capacitance-Voltage Characteristic }
231
- \label {p-type MOS C-V }
231
+ \caption {p-type MOS capacitance-voltage characteristic }
232
+ \label {fig: p-type MOS C-V }
232
233
\includegraphics {moscv.png}
233
234
\end {figure }
234
235
@@ -259,7 +260,7 @@ \section{Field-Effect Transistor Devices}
259
260
flows constantly for all drain voltage above saturation, however.
260
261
Before saturation is reached and after the gate voltage is above the threshold,
261
262
we are in the triode region. In the triode region, the current is given by
262
- \begin {equation }
263
+ \begin {equation } \label { eq:triode current }
263
264
i_{D(triode)} = \mu C_{ox} \frac {W}{L} ((v_{GS}-V_T)v_{DS}-\frac {v^2_{DS}}{2})
264
265
\end {equation }
265
266
Sometimes, the constant terms are wrapped up into
@@ -279,4 +280,179 @@ \section{Field-Effect Transistor Devices}
279
280
&= \frac {1}{\mu C_{ox} \frac {W}{L} (v_{GS} - V_T)}
280
281
\end {align }
281
282
283
+ Figure \ref {fig:Transfer Characteristics } shows a family of $ i_D$ -$ v_{DS}$
284
+ curves with differing values of $ v_{GS}$ .
285
+ \begin {figure }
286
+ \caption {Transfer characteristics of nMOSFETs}
287
+ \label {fig:Transfer Characteristics }
288
+ \includegraphics {Transfer Characteristics.png}
289
+ \end {figure }
290
+ Also show as a dashed green line is the saturation current
291
+ as a function of gate voltage. Let's look at the impact
292
+ the threshold voltage has by plotting the $ i_D$ -$ v_{GS}$ curve
293
+ for differing values of $ V_T$ in figure \ref {fig:idvgsvt }.
294
+ \begin {figure }
295
+ \caption {$ i_D$ -$ v_{GS}$ curve for select values of $ V_T$ }
296
+ \label {fig:idvgsvt }
297
+ \includegraphics {idvgsvt.png}
298
+ \end {figure }
299
+ Now the green dashed curve corresponds to a threshold voltage of zero.
300
+ Recall that the threshold voltage is intrinsic to
301
+ the semiconductor wafer. Doping variations, defect, and shape can
302
+ all affect the threshold voltage. If we build a depletion-mode nMOSFET,
303
+ then we allow for negative threshold voltages.
304
+
305
+ A normally off like in figure \ref {fig:nMOSFET diagram }
306
+ has the symbol shown in \ref {fig:nMOSFET schematic } and
307
+ is said to be in enhancement mode.
308
+ \begin {figure }
309
+ \caption {nMOSFET schematic}
310
+ \label {fig:nMOSFET schematic }
311
+ \begin {center }
312
+ \begin {circuitikz }
313
+ \draw (0,0) node[nmos] (mosfet) {};
314
+ \draw (mosfet.D) -- ++(0,-0.5) node[vdd] {$ V_{D}$ };
315
+ \draw (mosfet.S) -- ++(0,0.5) node[right] {$ V_S$ };
316
+ \draw (mosfet.G) -- ++(-0.5,0) node[left] {$ V_{GS}$ };
317
+ \end {circuitikz }
318
+ \end {center }
319
+ \end {figure }
320
+ If the nMOSFET has an n-channel between the source and
321
+ drain, as shown in figure \ref {fig:nMOSFET diagram on },
322
+ \begin {figure }
323
+ \caption { Normally on nMOSFET diagram}
324
+ \label {fig:nMOSFET diagram on }
325
+ \begin {center }
326
+ \begin {circuitikz }
327
+ \draw (0,0)
328
+ to (4,0)
329
+ to (4,2)
330
+ to (0,2)
331
+ to (0,0);
332
+ \node at (2,1) {p - Si};
333
+ \draw (2,0) to (2,-0.25) node[ground]{};
334
+
335
+ \draw (0.5, 2) rectangle node {$ n^+$ } (1.5,1.65);
336
+ \draw (2.5, 2) rectangle node {$ n^+$ } (3.5,1.65);
337
+
338
+ \draw [fill=gray] (0,2) rectangle (0.5,2.25);
339
+ \draw [fill=gray] (1.5,2) rectangle (2.5,2.25);
340
+ \draw [fill=gray] (3.5,2) rectangle (4,2.25);
341
+
342
+ \draw [fill=black] (0.5, 2) rectangle (1.5,2.125);
343
+ \draw [fill=black] (1.5,2.25) rectangle (2.5,2.375);
344
+ \draw [fill=black] (2.5, 2) rectangle (3.5,2.125);
345
+
346
+ \draw (1, 2) to[short, -*] (1, 3) node[above] {Source}
347
+ to (0.5, 3);
348
+ \draw (2, 2.25) to[short, -*] (2, 3.25) node[above] {Gate, $ v_{GS}(v_G)$ };
349
+ \draw (3, 2) to[short, -*] (3, 3) node[right] {Drain, $ v_{DS}(v_D)$ };
350
+
351
+ \draw [fill=green] (1.5, 2) rectangle (2.5, 1.75) node[below] {n-channel};
352
+ \end {circuitikz }
353
+ \end {center }
354
+ \end {figure }
355
+ then it is normally on and its symbol is as seen in
356
+ figure \ref {fig:nMOSFET on schematic }. This kind of nMOSFET
357
+ is said to be in depletion mode.
358
+ \begin {figure }
359
+ \caption {Schematic of normally on nMOSFET}
360
+ \label {fig:nMOSFET on schematic }
361
+ \begin {center }
362
+ \begin {circuitikz }
363
+ \draw (0,0) node[nmos] (mosfet) {};
364
+ \draw (mosfet.D) -- ++(0,-0.5) node[vdd] {$ V_{D}$ };
365
+ \draw (mosfet.S) -- ++(0,0.5) node[right] {$ V_S$ };
366
+ \draw (mosfet.G) -- ++(-0.5,0) node[left] {$ V_{GS}$ };
367
+ \draw [fill=black] (-0.5, -0.25) rectangle (-0.425, 0.25);
368
+ \end {circuitikz }
369
+ \end {center }
370
+ \end {figure }
371
+ Note the thicker line between source and drain representing
372
+ the n-channel.
373
+
374
+ Similarly, the pMOSFET shown in figure \ref {fig:pMOSFET } is
375
+ a normally off, enhancement mode pMOSFET. A pMOSFET with a
376
+ p-channel is normally on and in depletion mode.
377
+
378
+ Let's look at the transfer characteristics of
379
+ the different types of MOSFETs. figure \ref {fig:Transfer Characteristics }
380
+ shows these characteristics for a normally off, enhancement mode
381
+ nMOSFET.
382
+ For a normally on, depletion mode nMOSFET the graph is exactly
383
+ the same, except that the current can flow even when the
384
+ gate bias is zero since the fabricated channel allows
385
+ the flow of electrons from source to drain.
386
+ The output characteristics for a normally off, enhancement mode pMOSFET
387
+ are shown in figure \ref {fig:idvgsvt pmosfet }.
388
+ \begin {figure }
389
+ \caption {$ i_D$ -$ v_{DS}$ curve for select values of $ v_{GS}-V_T$ }
390
+ \label {fig:idvgsvt pmosfet }
391
+ \includegraphics {output characteristics pmosfet.png}
392
+ \end {figure }
393
+ A negative bias on the gate will induce a channel of positive holes
394
+ in the semiconductor, making the threshold voltage for a pMOSFET
395
+ negative. Again, the normally on depletion mode pMOSFET graph has the same
396
+ shape, but since there is an existing channel for current it will flow even for
397
+ some positive values of $ v_{GS}$ . We need to deplete the channel by pushing away all
398
+ the holes in it with the bias on the gate in order to turn it off.
399
+
400
+ To review, there for four kinds of MOSFETs in which we are interested:
401
+ \begin {itemize }
402
+ \item normally off, enhancement mode nMOSFETs
403
+ \item normally on, depletion mode nMOSFETs
404
+ \item normally off, enhancement mode pMOSFETs
405
+ \item normally on, depletion mode pMOSFETs
406
+ \end {itemize }
407
+
408
+ \subsection {Transconductance }
409
+
410
+ Now, let us move on the the topic of transconductance.
411
+ In the triode region, the transconductance is defined as
412
+ \begin {equation } \label {eq:g_m }
413
+ g_m = \frac {i_D}{v_{GS}} \rvert _{Q_{pt}}
414
+ \end {equation }
415
+ where
416
+ \begin {equation }
417
+ Q_{pt} = (I_D, V_{DS}).
418
+ \end {equation }
419
+ If we recall equation \ref {eq:triode current }, and substitute
420
+ for $ i_D$ in equation \ref {eq:g_d }, then we obtain
421
+ \begin {align }
422
+ g_m &= \mu C_{ox} \frac {W}{L} v_{DS} \\
423
+ &= \frac {i_{D(triode)}}{(v_{GS}-v_T)-\frac {v_{DS}}{2}}
424
+ \end {align }
425
+
426
+ In the saturation region,
427
+ \begin {equation }
428
+ g_m = \frac {di_D}{dv_{GS}} \rvert _{Q_{pt}}
429
+ \end {equation }
430
+ and
431
+ \begin {equation }
432
+ i_{D(sat)} = \mu C_{ox} \frac {W}{L} \frac {(v_{GS}-V_T)^2}{2}.
433
+ \end {equation }
434
+ Again combining these two equations,
435
+ \begin {align }
436
+ g_m &= \mu C_{ox} \frac {W}{L}(v_{GS} - V_T) \\
437
+ &= \frac {2i_{D(sat)}}{(v_{GS}-V_T)}
438
+ \end {align }
439
+ The larger the transconductance, the larger
440
+ the gain of an amplifier circuit
441
+ that uses the transistor.
442
+
443
+ By adjusting the voltage of the drain, we
444
+ can modulate the channel length. Specifically,
445
+ \begin {align }
446
+ i_{D(sat)} &\propto \frac {1}{L-\Delta L} \\
447
+ &\equiv \frac {1}{L}\left (1 + \frac {\Delta L}{L}\right ).
448
+ \end {align }
449
+ And
450
+ \begin {equation }
451
+ \Delta L \propto (v_{DS} - v_{DS(sat)})
452
+ \end {equation }
453
+ means that
454
+ \begin {equation }
455
+ i_{D(sat)} = \frac {1}{2} \mu C_{ox} \frac {W}{L} (v_{GS}-V_T)^2 \left [1 + \lambda (v_{DS}-v_{DS(sat)})\right ]
456
+ \end {equation }
457
+ where $ \lambda $ is the channel length modulation parameter.
282
458
\end {document }
0 commit comments