-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmp.py
92 lines (80 loc) · 2.89 KB
/
mp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
from torchvision import datasets, transforms
from tqdm import tqdm
device_ids = [0, 1, 2, 3] # 可用GPU
BATCH_SIZE = 64
transform = transforms.Compose([transforms.ToTensor()])
data_train = datasets.MNIST(root="./data/", transform=transform, train=True, download=True)
data_test = datasets.MNIST(root="./data/", transform=transform, train=False)
data_loader_train = torch.utils.data.DataLoader(
dataset=data_train,
# 单卡batch size * 卡数
batch_size=BATCH_SIZE * len(device_ids),
shuffle=True,
num_workers=2,
)
data_loader_test = torch.utils.data.DataLoader(
dataset=data_test, batch_size=BATCH_SIZE * len(device_ids), shuffle=True, num_workers=2
)
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = torch.nn.Sequential(
torch.nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(stride=2, kernel_size=2),
)
self.dense = torch.nn.Sequential(
torch.nn.Linear(14 * 14 * 128, 1024),
torch.nn.ReLU(),
torch.nn.Dropout(p=0.5),
torch.nn.Linear(1024, 10),
)
def forward(self, x):
x = self.conv1(x)
x = x.view(-1, 14 * 14 * 128)
x = self.dense(x)
return x
model = Model()
# 指定要用到的设备
model = torch.nn.DataParallel(model, device_ids=device_ids)
# 模型加载到设备0
model = model.cuda()
cost = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
n_epochs = 50
for epoch in range(n_epochs):
running_loss = 0.0
running_correct = 0
print("Epoch {}/{}".format(epoch, n_epochs))
print("-" * 10)
for data in tqdm(data_loader_train):
X_train, y_train = data
# 指定设备0
X_train, y_train = X_train.cuda(), y_train.cuda()
outputs = model(X_train)
_, pred = torch.max(outputs.data, 1)
optimizer.zero_grad()
loss = cost(outputs, y_train)
loss.backward()
optimizer.step()
running_loss += loss.data.item()
running_correct += torch.sum(pred == y_train.data)
testing_correct = 0
for data in data_loader_test:
X_test, y_test = data
# 指定设备1
X_test, y_test = X_test.cuda(), y_test.cuda()
outputs = model(X_test)
_, pred = torch.max(outputs.data, 1)
testing_correct += torch.sum(pred == y_test.data)
print(
"Loss is:{:.4f}, Train Accuracy is:{:.4f}%, Test Accuracy is:{:.4f}".format(
torch.true_divide(running_loss, len(data_train)),
torch.true_divide(100 * running_correct, len(data_train)),
torch.true_divide(100 * testing_correct, len(data_test)),
)
)
torch.save(model.state_dict(), "model_parameter.pkl")