-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmp_test_fixed_lg.py
146 lines (126 loc) · 4.6 KB
/
mp_test_fixed_lg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import numpy as np
from itertools import count
from multiprocessing import Pool, cpu_count
from config.test import *
from envs.datacenter_env.env import DatacenterEnv
from utils import *
class LG:
def select_action(self, obs):
_, job_run_time, _, machines_run_time, _, action_mask = obs
gap = np.abs(machines_run_time - job_run_time)
gap[action_mask == False] = 1e9
action = np.argmin(gap)
return action
def test_one_path(args, seq_index, data_save_path, fig_save_path):
print("start test seq_index: ", seq_index)
# init agent
agent = LG()
# init env
env = DatacenterEnv(args)
env.seq_index = seq_index
# start test
obs = env.reset()
for _ in count():
# select and perform an action
action = agent.select_action(obs)
# execute action
next_obs, _, done, _ = env.step(action)
# move to the next state
obs = next_obs
if done:
break
# save test result
# save not run to end data
machines_occupancy_rate = np.array(env.machines_occupancy_rate_record)
np.save(
os.path.join(data_save_path, f"occupancy_rate_{seq_index}.npy"),
machines_occupancy_rate,
)
machines_finish_time_record = np.array(env.machines_finish_time_record)
np.save(
os.path.join(data_save_path, f"finish_time_{seq_index}.npy"),
machines_finish_time_record,
)
# print mean std and mean run time
machines_occupancy_std = np.std(machines_occupancy_rate * args.res_capacity, axis=1)
machines_occupancy_mean_std = np.mean(machines_occupancy_std, axis=1)
std_fitness = np.mean(machines_occupancy_mean_std)
runtime_fitness = np.mean(machines_finish_time_record)
print(f"std_fitness {std_fitness} runtime_fitness {runtime_fitness}")
# save run to end data
env.run_to_end()
machines_occupancy_rate = np.array(env.machines_occupancy_rate_record)
np.save(
os.path.join(data_save_path, f"end_occupancy_rate_{seq_index}.npy"),
machines_occupancy_rate,
)
machines_finish_time_record = np.array(env.machines_finish_time_record)
np.save(
os.path.join(data_save_path, f"end_finish_time_{seq_index}.npy"),
machines_finish_time_record,
)
for i in range(4):
data = machines_occupancy_rate[:, :, i]
save_name = os.path.join(fig_save_path, "use_rate", f"use_rate_e{seq_index}_{i}.png")
plot_mutil_lines_chart(
data,
save_name=save_name,
xlabel="time",
ylabel="utilization",
title="Container Resource Utilization",
)
save_name = os.path.join(fig_save_path, "finish_time", f"finish_time_e{seq_index}.png")
plot_mutil_lines_chart(
machines_finish_time_record,
save_name=save_name,
xlabel="time",
ylabel="remaining time",
title="Container Remaining Time",
)
return std_fitness, runtime_fitness, env.job_num
if __name__ == "__main__":
args = parse_args()
args.method = "lg"
save_dir = os.path.join(
args.save_path,
args.method,
args.tag,
)
model_save_path = os.path.join(save_dir, "models")
fig_save_path = os.path.join(save_dir, "fig")
data_save_path = os.path.join(save_dir, "data")
os.makedirs(data_save_path, exist_ok=True)
os.makedirs(os.path.join(fig_save_path, "use_rate"), exist_ok=True)
os.makedirs(os.path.join(fig_save_path, "finish_time"), exist_ok=True)
os.makedirs(model_save_path, exist_ok=True)
os.makedirs(fig_save_path, exist_ok=True)
# mutil process
mutil_process = []
pool = Pool(cpu_count())
for i in range(args.job_seq_num):
one_process = pool.apply_async(test_one_path, args=(args, i, data_save_path, fig_save_path))
mutil_process.append(one_process)
pool.close()
pool.join()
# caculate mean performent
fitness_record = []
job_num_list = []
for p in mutil_process:
std_fitness, runtime_fitness, job_num = p.get()
job_num_list.append(job_num)
fitness_record.append((std_fitness, runtime_fitness))
fitness_record = np.array(fitness_record)
mean_fitness = np.mean(fitness_record, axis=0)
std_fitness = np.std(fitness_record, axis=0)
print(job_num_list)
np.save(os.path.join(data_save_path, "job_num.npy"), np.array(job_num))
print(
"mean std fitness: {:.4f} mean runtime fitness: {:.4f}".format(
mean_fitness[0], mean_fitness[1]
)
)
print(
"std std fitness: {:.4f} std runtime fitness: {:.4f}".format(std_fitness[0], std_fitness[1])
)
print("done")