-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmp_test_fixed_ns.py
280 lines (242 loc) · 10.9 KB
/
mp_test_fixed_ns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os
import numpy as np
import random
from itertools import count
from multiprocessing import Pool, cpu_count
from copy import deepcopy
from config.test import *
from envs.datacenter_env.env import DatacenterEnv
from utils import *
class NSG:
def __init__(self, machine_num) -> None:
self.machine_num = machine_num
def fast_non_dominated_sort(self, values):
"""
优化问题一般是求最小值
:param values: 解集[目标函数1解集,目标函数2解集...]
:return:返回解的各层分布集合序号。类似[[1], [9], [0, 8], [7, 6], [3, 5], [2, 4]] 其中[1]表示Pareto 最优解对应的序号
"""
values11 = values[0] # 函数1解集
S = [[] for _ in range(0, len(values11))] # 存放 每个个体支配解的集合。
front = [[]] # 存放群体的级别集合,一个级别对应一个[]
n = [0 for _ in range(0, len(values11))] # 每个个体被支配解的个数 。即针对每个解,存放有多少好于这个解的个数
rank = [np.inf for i in range(0, len(values11))] # 存放每个个体的级别
for p in range(0, len(values11)): # 遍历每一个个体
# ====得到各个个体 的被支配解个数 和支配解集合====
S[p] = [] # 该个体支配解的集合 。即存放差于该解的解
n[p] = 0 # 该个体被支配的解的个数初始化为0 即找到有多少好于该解的 解的个数
for q in range(0, len(values11)): # 遍历每一个个体
less = 0 # 的目标函数值小于p个体的目标函数值数目
equal = 0 # 的目标函数值等于p个体的目标函数值数目
greater = 0 # 的目标函数值大于p个体的目标函数值数目
for k in range(len(values)): # 遍历每一个目标函数
if values[k][p] > values[k][q]: # 目标函数k时,q个体值 小于p个体
less = less + 1 # q比p 好
if values[k][p] == values[k][q]: # 目标函数k时,p个体值 等于于q个体
equal = equal + 1
if values[k][p] < values[k][q]: # 目标函数k时,q个体值 大于p个体
greater = greater + 1 # q比p 差
if (less + equal == len(values)) and (equal != len(values)):
n[p] = n[p] + 1 # q比好, 比p好的个体个数加1
elif (greater + equal == len(values)) and (equal != len(values)):
S[p].append(q) # q比p差,存放比p差的个体解序号
# =====找出Pareto 最优解,即n[p]===0 的 个体p序号。=====
if n[p] == 0:
rank[p] = 0 # 序号为p的个体,等级为0即最优
if p not in front[0]:
# 如果p不在第0层中
# 将其追加到第0层中
front[0].append(p) # 存放Pareto 最优解序号
# =======划分各层解========
"""
#示例,假设解的分布情况如下,由上面程序得到 front[0] 存放的是序号1
个体序号 被支配个数 支配解序号 front
1 0 2,3,4,5 0
2 1 3,4,5
3 1 4,5
4 3 5
5 4 0
#首先 遍历序号1的支配解,将对应支配解[2,3,4,5] ,的被支配个数-1(1-1,1-1,3-1,4-1)
得到
表
个体序号 被支配个数 支配解序号 front
1 0 2,3,4,5 0
2 0 3,4,5
3 0 4,5
4 2 5
5 2 0
#再令 被支配个数==0 的序号 对应的front 等级+1
得到新表...
"""
i = 0
while front[i] != []: # 如果分层集合为不为空
Q = []
for p in front[i]: # 遍历当前分层集合的各个个体p
for q in S[p]: # 遍历p 个体 的每个支配解q
n[q] = n[q] - 1 # 则将fk中所有给对应的个体np-1
if n[q] == 0:
# 如果nq==0
rank[q] = i + 1
if q not in Q:
Q.append(q) # 存放front=i+1 的个体序号
i = i + 1 # front 等级+1
front.append(Q)
del front[len(front) - 1] # 删除循环退出 时 i+1产生的[]
return front # 返回各层 的解序号集合 # 类似[[1], [9], [0, 8], [7, 6], [3, 5], [2, 4]]
def select_action(self, obs):
# job_state, machines_state,
(
job_res_req_rate,
job_run_time,
machines_occupancy_rate,
machines_run_time,
_,
action_mask,
) = obs
# std 越小越好
action_std = np.ones(self.machine_num) * np.inf
# action_std = np.ones((10, 4)) * np.inf # 分别考虑的
machines_occupancy_rate = machines_occupancy_rate[:, 0, :]
# 运行时长越小越好
action_run_time = np.ones(self.machine_num) * np.inf
# action_run_time_diff = np.ones(self.machine_num) * np.inf
# 预先放置, 计算一遍可行动作,计算std, 以及剩余运行时长
for machine_index, mask in enumerate(action_mask):
# 跳过非法action
if mask == False:
continue
after_machines_occupancy_rate = deepcopy(machines_occupancy_rate)
after_machines_run_time = deepcopy(machines_run_time)
after_machines_occupancy_rate[machine_index] += job_res_req_rate
after_machines_run_time[machine_index] = max(
after_machines_run_time[machine_index], job_run_time
)
# caculate std
after_std = np.std(after_machines_occupancy_rate, axis=0) # m*4
action_std[machine_index] = np.mean(after_std)
# caculate runtime
after_run_time = np.mean(after_machines_run_time) # m*1
action_run_time[machine_index] = after_run_time
# action_run_time_diff[machine_index] = abs(
# after_machines_run_time[machine_index] - job_run_time
# )
# 非支配排序
# 问题来了 如果希望有个权重如何解决呢?
action_value = np.concatenate(([action_std], [action_run_time]))
# action_value = np.concatenate(([action_std], [action_run_time_diff]))
front = self.fast_non_dominated_sort(action_value)
# 输出action
action = random.sample(front[0], 1)[0]
return action
def test_one_path(args, seq_index, data_save_path, fig_save_path):
print("start test seq_index: ", seq_index)
# init agent
agent = NSG(args.machine_num)
# init env
env = DatacenterEnv(args)
env.seq_index = seq_index
# start test
obs = env.reset()
for _ in count():
# select and perform an action
action = agent.select_action(obs)
# execute action
next_obs, _, done, _ = env.step(action)
# move to the next state
obs = next_obs
if done:
break
# save test result
# save not run to end data
machines_occupancy_rate = np.array(env.machines_occupancy_rate_record)
np.save(
os.path.join(data_save_path, f"occupancy_rate_{seq_index}.npy"),
machines_occupancy_rate,
)
machines_finish_time_record = np.array(env.machines_finish_time_record)
np.save(
os.path.join(data_save_path, f"finish_time_{seq_index}.npy"),
machines_finish_time_record,
)
# print mean std and mean run time
machines_occupancy_std = np.std(machines_occupancy_rate * args.res_capacity, axis=1)
machines_occupancy_mean_std = np.mean(machines_occupancy_std, axis=1)
std_fitness = np.mean(machines_occupancy_mean_std)
runtime_fitness = np.mean(machines_finish_time_record)
print(f"std_fitness {std_fitness} runtime_fitness {runtime_fitness}")
# save run to end data
env.run_to_end()
machines_occupancy_rate = np.array(env.machines_occupancy_rate_record)
np.save(
os.path.join(data_save_path, f"end_occupancy_rate_{seq_index}.npy"),
machines_occupancy_rate,
)
machines_finish_time_record = np.array(env.machines_finish_time_record)
np.save(
os.path.join(data_save_path, f"end_finish_time_{seq_index}.npy"),
machines_finish_time_record,
)
for i in range(4):
data = machines_occupancy_rate[:, :, i]
save_name = os.path.join(fig_save_path, "use_rate", f"use_rate_e{seq_index}_{i}.png")
plot_mutil_lines_chart(
data,
save_name=save_name,
xlabel="time",
ylabel="utilization",
title="Container Resource Utilization",
)
save_name = os.path.join(fig_save_path, "finish_time", f"finish_time_e{seq_index}.png")
plot_mutil_lines_chart(
machines_finish_time_record,
save_name=save_name,
xlabel="time",
ylabel="remaining time",
title="Container Remaining Time",
)
return std_fitness, runtime_fitness, env.job_num
if __name__ == "__main__":
args = parse_args()
args.method = "nsg"
save_dir = os.path.join(
args.save_path,
args.method,
args.tag,
)
model_save_path = os.path.join(save_dir, "models")
fig_save_path = os.path.join(save_dir, "fig")
data_save_path = os.path.join(save_dir, "data")
os.makedirs(data_save_path, exist_ok=True)
os.makedirs(os.path.join(fig_save_path, "use_rate"), exist_ok=True)
os.makedirs(os.path.join(fig_save_path, "finish_time"), exist_ok=True)
os.makedirs(model_save_path, exist_ok=True)
os.makedirs(fig_save_path, exist_ok=True)
# mutil process
mutil_process = []
pool = Pool(cpu_count())
for i in range(args.job_seq_num):
one_process = pool.apply_async(test_one_path, args=(args, i, data_save_path, fig_save_path))
mutil_process.append(one_process)
pool.close()
pool.join()
# caculate mean performent
fitness_record = []
job_num_list = []
for p in mutil_process:
std_fitness, runtime_fitness, job_num = p.get()
job_num_list.append(job_num)
fitness_record.append((std_fitness, runtime_fitness))
fitness_record = np.array(fitness_record)
mean_fitness = np.mean(fitness_record, axis=0)
std_fitness = np.std(fitness_record, axis=0)
print(job_num_list)
np.save(os.path.join(data_save_path, "job_num.npy"), np.array(job_num))
print(
"mean std fitness: {:.4f} mean runtime fitness: {:.4f}".format(
mean_fitness[0], mean_fitness[1]
)
)
print(
"std std fitness: {:.4f} std runtime fitness: {:.4f}".format(std_fitness[0], std_fitness[1])
)
print("done")