-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmp_test_fixed_rr_load.py
211 lines (185 loc) · 6.46 KB
/
mp_test_fixed_rr_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import numpy as np
import pandas as pd
from itertools import count
from multiprocessing import Pool, cpu_count
from config.test import *
from envs.datacenter_env.env import DatacenterEnv
from utils import *
class RR:
def __init__(self, machine_num) -> None:
self.machine_num = machine_num
self.action_index = 0
def select_action(self, obs):
_, _, _, _, _, action_mask = obs
action = self.action_index
for i in range(self.machine_num):
action = (action + 1) % self.machine_num
if action_mask[action] == True:
self.action_index = action
break
return action
def test_one_path(args, seq_index, data_save_path, fig_save_path):
print("start test seq_index: ", seq_index)
# init agent
agent = RR(args.machine_num)
# init env
env = DatacenterEnv(args)
env.seq_index = seq_index
# start test
obs = env.reset()
for _ in count():
# select and perform an action
action = agent.select_action(obs)
# execute action
next_obs, _, done, _ = env.step(action)
# move to the next state
obs = next_obs
if done:
break
# save test result
# save not run to end data
machines_occupancy_rate = np.array(env.machines_occupancy_rate_record)
np.save(
os.path.join(data_save_path, f"occupancy_rate_{seq_index}.npy"),
machines_occupancy_rate,
)
machines_finish_time_record = np.array(env.machines_finish_time_record)
np.save(
os.path.join(data_save_path, f"finish_time_{seq_index}.npy"),
machines_finish_time_record,
)
# print mean std and mean run time
machines_occupancy_std = np.std(machines_occupancy_rate * args.res_capacity, axis=1)
machines_occupancy_mean_std = np.mean(machines_occupancy_std, axis=1)
std_fitness = np.mean(machines_occupancy_mean_std)
runtime_fitness = np.mean(machines_finish_time_record)
print(f"std_fitness {std_fitness} runtime_fitness {runtime_fitness}")
# save run to end data
env.run_to_end()
machines_occupancy_rate = np.array(env.machines_occupancy_rate_record)
np.save(
os.path.join(data_save_path, f"end_occupancy_rate_{seq_index}.npy"),
machines_occupancy_rate,
)
machines_finish_time_record = np.array(env.machines_finish_time_record)
np.save(
os.path.join(data_save_path, f"end_finish_time_{seq_index}.npy"),
machines_finish_time_record,
)
for i in range(4):
data = machines_occupancy_rate[:, :, i]
save_name = os.path.join(fig_save_path, "use_rate", f"use_rate_e{seq_index}_{i}.png")
plot_mutil_lines_chart(
data,
save_name=save_name,
xlabel="time",
ylabel="utilization",
title="Container Resource Utilization",
)
save_name = os.path.join(fig_save_path, "finish_time", f"finish_time_e{seq_index}.png")
plot_mutil_lines_chart(
machines_finish_time_record,
save_name=save_name,
xlabel="time",
ylabel="remaining time",
title="Container Remaining Time",
)
return std_fitness, runtime_fitness, env.job_num
if __name__ == "__main__":
args = parse_args()
args.method = "rr"
args.tag = "user_load_test"
args.actual = False
job_num_list = range(2, 10)
root_dir = os.path.join(
args.save_path,
args.method,
args.tag,
)
result = []
result2 = []
for max_job_num in job_num_list:
user_load_rate = (
max_job_num
/ 2
* args.max_res_req
/ 2
* args.max_job_len
/ 2
/ args.res_capacity
/ args.machine_num
)
print(f"Test user_load_rate {user_load_rate:.3f}")
save_dir = os.path.join(
root_dir,
f"user_load_rate_{user_load_rate:.3f}",
)
os.makedirs(save_dir, exist_ok=True)
fig_save_path = os.path.join(save_dir, "fig")
data_save_path = os.path.join(save_dir, "data")
os.makedirs(data_save_path, exist_ok=True)
os.makedirs(fig_save_path, exist_ok=True)
os.makedirs(os.path.join(fig_save_path, "use_rate"), exist_ok=True)
os.makedirs(os.path.join(fig_save_path, "finish_time"), exist_ok=True)
# save args
args.max_job_num = max_job_num
args_dict = args.__dict__
args_path = os.path.join(save_dir, "args.txt")
with open(args_path, "w") as f:
for each_arg, value in args_dict.items():
f.writelines(each_arg + " : " + str(value) + "\n")
# mutil process
mutil_process = []
pool = Pool(cpu_count())
for i in range(args.job_seq_num):
one_process = pool.apply_async(
test_one_path, args=(args, i, data_save_path, fig_save_path)
)
mutil_process.append(one_process)
pool.close()
pool.join()
# caculate mean performent
fitness_record = []
job_num_list = []
for p in mutil_process:
std_fitness, runtime_fitness, job_num = p.get()
job_num_list.append(job_num)
fitness_record.append((std_fitness, runtime_fitness))
result2.append((user_load_rate, std_fitness, runtime_fitness))
fitness_record = np.array(fitness_record)
mean_fitness = np.mean(fitness_record, axis=0)
std_fitness = np.std(fitness_record, axis=0)
print(job_num_list)
np.save(os.path.join(data_save_path, "job_num.npy"), np.array(job_num))
print(
"mean std fitness: {:.4f} mean runtime fitness: {:.4f}".format(
mean_fitness[0], mean_fitness[1]
)
)
print(
"std std fitness: {:.4f} std runtime fitness: {:.4f}".format(
std_fitness[0], std_fitness[1]
)
)
print("done")
df = pd.DataFrame(
result,
columns=[
"user_load_rate",
"balance_fitness_mean",
"duration_fitness_mean",
"balance_fitness_std",
"duration_fitness_std",
],
)
df.to_csv(os.path.join(root_dir, f"{ args.method}_user_load_exp.csv"))
df2 = pd.DataFrame(
result2,
columns=[
"user_load_rate",
"balance_fitness",
"duration_fitness",
],
)
df2.to_csv(os.path.join(root_dir, f"{ args.method}_user_load_exp2.csv"))