-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmp_test_nn_sigma.py
318 lines (275 loc) · 10.6 KB
/
mp_test_nn_sigma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
from itertools import count
from multiprocessing import Pool, cpu_count
from config.test import *
from envs.datacenter_env.env import DatacenterEnv
from utils import *
class Actor(nn.Module):
def __init__(self, dim_list=[126, 32, 1]):
super().__init__()
self.dim_list = dim_list
fc = []
self.param_num = 0
for i in range(len(dim_list) - 1):
fc.append(nn.Linear(dim_list[i], dim_list[i + 1]))
self.param_num += dim_list[i] * dim_list[i + 1] + dim_list[i + 1]
self.fc = nn.ModuleList(fc)
def forward(self, x):
for i in range(len(self.fc) - 1):
x = F.relu(self.fc[i](x))
x = self.fc[-1](x)
x = torch.squeeze(x, dim=-1)
return x
def update(self, weights):
weights = torch.FloatTensor(weights)
with torch.no_grad():
start = 0
for fc in self.fc:
end = start + fc.in_features * fc.out_features
fc.weight.data = weights[start:end].reshape(fc.out_features, fc.in_features)
start = end
end = start + fc.out_features
fc.bias.data = weights[start:end]
start = end
def predict(self, input, action_mask=None):
predict = self(input)
if action_mask is not None:
predict[action_mask == False] += -1e8
return torch.argmax(predict, dim=1).cpu().item()
def show(self):
with torch.no_grad():
for parameters in self.parameters():
print(parameters.numpy().flatten())
class Agent(nn.Module):
def __init__(self):
super(Agent, self).__init__()
self.job_actor = Actor()
def update(self, job_weights):
self.job_actor.update(job_weights)
def select_action(self, obs):
(
job_res_req_rate,
job_run_time,
machines_all_occupancy_rate,
machines_run_time,
_,
action_mask,
) = obs
# to tensor
job_state = torch.tensor(np.array([*job_res_req_rate, job_run_time]), dtype=torch.float)
machines_all_occupancy_rate = torch.tensor(
np.array([machines_all_occupancy_rate]), dtype=torch.float
)
machines_run_time = torch.tensor(np.array([machines_run_time]), dtype=torch.float)
action_mask = torch.tensor(np.array([action_mask]), dtype=torch.bool)
# job_state: B*t*r, machines_state: B*n*t*r, buffer_state: B*t
B, n, t, r = machines_all_occupancy_rate.shape
machines_occupancy_rate_mean = torch.mean(machines_all_occupancy_rate, dim=1) # B*t*r
machines_occupancy_rate_std = torch.std(machines_all_occupancy_rate, dim=1) # B*t*r
job_state = job_state.reshape(B, 1, -1)
job_state = job_state.repeat(1, n, 1)
machines_occupancy_rate_mean = machines_occupancy_rate_mean.reshape(B, 1, -1)
machines_occupancy_rate_std = machines_occupancy_rate_std.reshape(B, 1, -1)
machines_state_mean = torch.cat(
(
machines_occupancy_rate_mean,
machines_occupancy_rate_std,
),
dim=-1,
)
machines_occupancy_rate = machines_all_occupancy_rate.reshape(B, n, -1)
machines_run_time = machines_run_time.reshape(B, n, -1)
machines_state_mean_std_run_time = machines_state_mean.repeat(1, n, 1)
job_input = torch.cat(
(
job_state,
machines_occupancy_rate,
machines_run_time,
machines_state_mean_std_run_time,
),
dim=-1,
) # B*n*dim2
action = self.job_actor.predict(job_input, action_mask)
# action = self.job_actor.predict(job_input)
return action
def show(self):
self.job_actor.show()
def test_one_path(args, seq_index, data_save_path, fig_save_path):
print("start test seq_index: ", seq_index)
# checkpoint_path = "output/train/nsga/run02/elite/g3382_0/15_-349.95341_-19.68042.pth"
# checkpoint_path = "output/one_job/ga/reward_sum/run02_m15/final_population/g_9796_f_-310.773_-0.026/24_f_-308.432_-0.024.pth"
agent = Agent()
# state_dict = torch.load("24_f_-342.436_-0.029.pth")
# agent.load_state_dict(state_dict)
state_dict = torch.load(args.checkpoint_path)
agent.job_actor.load_state_dict(state_dict)
# init env
env = DatacenterEnv(args)
env.seq_index = seq_index
# start test
obs = env.reset()
for _ in count():
# select and perform an action
action = agent.select_action(obs)
# execute action
next_obs, _, done, _ = env.step(action)
# move to the next state
obs = next_obs
if done:
break
# save test result
# save not run to end data
machines_occupancy_rate = np.array(env.machines_occupancy_rate_record)
np.save(
os.path.join(data_save_path, f"occupancy_rate_{seq_index}.npy"),
machines_occupancy_rate,
)
machines_finish_time_record = np.array(env.machines_finish_time_record)
np.save(
os.path.join(data_save_path, f"finish_time_{seq_index}.npy"),
machines_finish_time_record,
)
machines_job_num_record = np.array(env.machines_job_num_record)
np.save(
os.path.join(data_save_path, f"job_num_{seq_index}.npy"),
machines_job_num_record,
)
# print mean std and mean run time
machines_occupancy_std = np.std(machines_occupancy_rate * args.res_capacity, axis=1)
machines_occupancy_mean_std = np.mean(machines_occupancy_std, axis=1)
std_fitness = np.mean(machines_occupancy_mean_std)
runtime_fitness = np.mean(machines_finish_time_record)
print(f"std_fitness {std_fitness} runtime_fitness {runtime_fitness}")
# save run to end data
env.run_to_end()
machines_occupancy_rate = np.array(env.machines_occupancy_rate_record)
np.save(
os.path.join(data_save_path, f"end_occupancy_rate_{seq_index}.npy"),
machines_occupancy_rate,
)
machines_finish_time_record = np.array(env.machines_finish_time_record)
np.save(
os.path.join(data_save_path, f"end_finish_time_{seq_index}.npy"),
machines_finish_time_record,
)
machines_job_num_record = np.array(env.machines_job_num_record)
np.save(
os.path.join(data_save_path, f"end_job_num_{seq_index}.npy"),
machines_job_num_record,
)
for i in range(4):
data = machines_occupancy_rate[:, :, i]
save_name = os.path.join(fig_save_path, "use_rate", f"use_rate_e{seq_index}_{i}.png")
plot_mutil_lines_chart(
data,
save_name=save_name,
xlabel="time",
ylabel="utilization",
title="Container Resource Utilization",
)
save_name = os.path.join(fig_save_path, "finish_time", f"finish_time_e{seq_index}.png")
plot_mutil_lines_chart(
machines_finish_time_record,
save_name=save_name,
xlabel="time",
ylabel="remaining time",
title="Container Remaining Time",
)
return std_fitness, runtime_fitness, env.job_num
if __name__ == "__main__":
args = parse_args()
args.method = "nsga"
args.tag = "nsga_run05_g20000_12"
args.actual = True
# args.checkpoint_path = "output/train/nsga/run03/elite/g1_1/20_-501.30449_-25.49838.pth"
# args.checkpoint_path = "output/train/nsga/run05/elite/g24214_0/10_-351.04309_-20.52227.pth"
# args.checkpoint_path = "output/train/wsga/run05/elite/g13443_3/0_-335.70133_-14.49433.pth"
args.checkpoint_path = "output/train/nsga/run05/elite/g20000_0/0_-455.58486_-12.92719.pth"
# user_sigam_list = np.linspace(0, 7.5 * 60 // 3, 10, dtype=np.int32)
user_sigam_list = [0]
root_dir = os.path.join(
args.save_path,
args.method,
args.tag,
)
result = []
result2 = []
for user_sigma in user_sigam_list:
print(f"Test user sigma {user_sigma}")
save_dir = os.path.join(
root_dir,
f"user_sigma_{user_sigma}",
)
os.makedirs(save_dir, exist_ok=True)
fig_save_path = os.path.join(save_dir, "fig")
data_save_path = os.path.join(save_dir, "data")
os.makedirs(data_save_path, exist_ok=True)
os.makedirs(fig_save_path, exist_ok=True)
os.makedirs(os.path.join(fig_save_path, "use_rate"), exist_ok=True)
os.makedirs(os.path.join(fig_save_path, "finish_time"), exist_ok=True)
# save args
args.user_sigma = user_sigma
args_dict = args.__dict__
args_path = os.path.join(save_dir, "args.txt")
with open(args_path, "w") as f:
for each_arg, value in args_dict.items():
f.writelines(each_arg + " : " + str(value) + "\n")
# mutil process
mutil_process = []
pool = Pool(cpu_count())
for i in range(args.job_seq_num):
one_process = pool.apply_async(
test_one_path, args=(args, i, data_save_path, fig_save_path)
)
mutil_process.append(one_process)
pool.close()
pool.join()
# caculate mean performent
fitness_record = []
job_num_list = []
for p in mutil_process:
std_fitness, runtime_fitness, job_num = p.get()
job_num_list.append(job_num)
fitness_record.append((std_fitness, runtime_fitness))
result2.append((user_sigma, std_fitness, runtime_fitness))
fitness_record = np.array(fitness_record)
mean_fitness = np.mean(fitness_record, axis=0)
std_fitness = np.std(fitness_record, axis=0)
print(job_num_list)
np.save(os.path.join(data_save_path, "job_num.npy"), np.array(job_num))
print(
"mean std fitness: {:.4f} mean runtime fitness: {:.4f}".format(
mean_fitness[0], mean_fitness[1]
)
)
print(
"std std fitness: {:.4f} std runtime fitness: {:.4f}".format(
std_fitness[0], std_fitness[1]
)
)
print("done")
df = pd.DataFrame(
result,
columns=[
"user_sigma",
"balance_fitness_mean",
"duration_fitness_mean",
"balance_fitness_std",
"duration_fitness_std",
],
)
df.to_csv(os.path.join(root_dir, f"{ args.method}_user_sigma_exp.csv"))
df2 = pd.DataFrame(
result2,
columns=[
"user_sigma",
"balance_fitness",
"duration_fitness",
],
)
df2.to_csv(os.path.join(root_dir, f"{ args.method}_user_sigma_exp2.csv"))