-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmp_train_nn_deepjs.py
499 lines (425 loc) · 18 KB
/
mp_train_nn_deepjs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch.distributions import Categorical
from torch.utils.data import Dataset, DataLoader
from config.deepjs import *
from envs.datacenter_env.env import DatacenterEnv
from multiprocessing import Pool, cpu_count
from torch.utils.tensorboard import SummaryWriter
class Actor(nn.Module):
def __init__(self, dim_list=[126, 32, 1]):
super().__init__()
self.dim_list = dim_list
fc = []
self.param_num = 0
for i in range(len(dim_list) - 1):
fc.append(nn.Linear(dim_list[i], dim_list[i + 1]))
self.param_num += dim_list[i] * dim_list[i + 1] + dim_list[i + 1]
self.fc = nn.ModuleList(fc)
def forward(self, x):
for i in range(len(self.fc) - 1):
x = F.relu(self.fc[i](x))
x = self.fc[-1](x)
x = torch.squeeze(x, dim=-1)
return x
def predict(self, input, action_mask=None, absolute=True):
predict = self(input)
if action_mask is not None:
predict[action_mask == False] += -1e8
if absolute:
action = torch.argmax(predict, dim=1).cpu().item()
else:
action_probs = torch.softmax(predict, dim=-1)
action_dist = Categorical(action_probs)
action = action_dist.sample().cpu().item()
return action
class Agent(nn.Module):
def __init__(self):
super(Agent, self).__init__()
self.job_actor = Actor()
def choose_action(self, obs, absolute=True):
(
job_res_req_rate,
job_run_time,
machines_all_occupancy_rate,
machines_run_time,
_,
action_mask,
) = obs
# to tensor
job_state = torch.tensor(np.array([*job_res_req_rate, job_run_time]), dtype=torch.float)
machines_all_occupancy_rate = torch.tensor(
np.array([machines_all_occupancy_rate]), dtype=torch.float
)
machines_run_time = torch.tensor(np.array([machines_run_time]), dtype=torch.float)
action_mask = torch.tensor(np.array([action_mask]), dtype=torch.bool)
# job_state: B*t*r, machines_state: B*n*t*r, buffer_state: B*t
B, n, t, r = machines_all_occupancy_rate.shape
machines_occupancy_rate_mean = torch.mean(machines_all_occupancy_rate, dim=1) # B*t*r
machines_occupancy_rate_std = torch.std(machines_all_occupancy_rate, dim=1) # B*t*r
job_state = job_state.reshape(B, 1, -1)
job_state = job_state.repeat(1, n, 1)
machines_occupancy_rate_mean = machines_occupancy_rate_mean.reshape(B, 1, -1)
machines_occupancy_rate_std = machines_occupancy_rate_std.reshape(B, 1, -1)
machines_state_mean = torch.cat(
(
machines_occupancy_rate_mean,
machines_occupancy_rate_std,
),
dim=-1,
)
machines_occupancy_rate = machines_all_occupancy_rate.reshape(B, n, -1)
machines_run_time = machines_run_time.reshape(B, n, -1)
machines_state_mean_std_run_time = machines_state_mean.repeat(1, n, 1)
job_input = torch.cat(
(
job_state,
machines_occupancy_rate,
machines_run_time,
machines_state_mean_std_run_time,
),
dim=-1,
) # B*n*dim2
action = self.job_actor.predict(job_input, action_mask, absolute)
# action = self.job_actor.predict(job_input)
return action
class JobShopDataset(Dataset):
def __init__(self, obs_data, action_data, advantage_data) -> None:
self.obs_data = [i for item in obs_data for i in item]
self.action_data = [i for item in action_data for i in item]
self.advantage_data = [i for item in advantage_data for i in item]
def __getitem__(self, index):
obs = self.obs_data[index]
action = self.action_data[index]
advantage = self.advantage_data[index]
state, action_mask = self.obs_format(obs)
return state, action_mask, action, advantage
def obs_format(self, obs):
(
job_res_req_rate,
job_run_time,
machines_all_occupancy_rate,
machines_run_time,
_,
action_mask,
) = obs
job_state = torch.tensor(np.array([*job_res_req_rate, job_run_time]), dtype=torch.float)
machines_all_occupancy_rate = torch.tensor(
np.array([machines_all_occupancy_rate]), dtype=torch.float
)
machines_run_time = torch.tensor(np.array([machines_run_time]), dtype=torch.float)
# job_state: B*t*r, machines_state: B*n*t*r, buffer_state: B*t
B, n, t, r = machines_all_occupancy_rate.shape
machines_occupancy_rate_mean = torch.mean(machines_all_occupancy_rate, dim=1) # B*t*r
machines_occupancy_rate_std = torch.std(machines_all_occupancy_rate, dim=1) # B*t*r
job_state = job_state.reshape(B, 1, -1)
job_state = job_state.repeat(1, n, 1)
machines_occupancy_rate_mean = machines_occupancy_rate_mean.reshape(B, 1, -1)
machines_occupancy_rate_std = machines_occupancy_rate_std.reshape(B, 1, -1)
machines_state_mean = torch.cat(
(
machines_occupancy_rate_mean,
machines_occupancy_rate_std,
),
dim=-1,
)
machines_occupancy_rate = machines_all_occupancy_rate.reshape(B, n, -1)
machines_run_time = machines_run_time.reshape(B, n, -1)
machines_state_mean_std_run_time = machines_state_mean.repeat(1, n, 1)
state = torch.cat(
(
job_state,
machines_occupancy_rate,
machines_run_time,
machines_state_mean_std_run_time,
),
dim=-1,
) # B*n*dim2
action_mask = torch.tensor(np.array([action_mask]), dtype=torch.bool)
return state, action_mask
def __len__(self):
return len(self.action_data)
class InputDrive:
def __init__(self, args) -> None:
self.args = args
self.seq_index = 0
self.seq_num = args.job_seq_num
self.agent = Agent()
self.prob = 0.8
self.prob_step = 2 / self.args.epoch
def set_seed(self, seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed) # 为CPU设置随机种子
torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子
torch.cuda.manual_seed_all(seed) # 为所有GPU设置随机种子
def get_one_experience(self, args, seed, model_state_dict, seq_index, prob=0):
# 初始化环境
env = DatacenterEnv(args)
env.seq_index = seq_index
env.reset()
# 初始化agent
agent = Agent()
agent.load_state_dict(model_state_dict)
# 设置随机种子
self.set_seed(seed)
# 收集轨迹
obs = env.reset()
done = False
trajectory = []
agent.eval()
with torch.no_grad():
while not done:
action = agent.choose_action(obs, absolute=False)
next_obs, reward, done, _ = env.step(action)
trajectory.append([obs, action, reward, next_obs, done])
obs = next_obs
# 收集fitness
# 计算标准差
machines_occupancy_rate = np.array(env.machines_occupancy_rate_record)
machines_occupancy_std = np.std(machines_occupancy_rate * args.res_capacity, axis=1)
machines_occupancy_mean_std = np.mean(machines_occupancy_std, axis=1)
std_fitness = np.mean(machines_occupancy_mean_std)
# 计算运行时长
machines_finish_time_record = np.array(env.machines_finish_time_record)
runtime_fitness = np.mean(machines_finish_time_record)
fitness = np.array([-runtime_fitness, -std_fitness])
return trajectory, fitness
# 计算折扣累积reward
def get_discount_reward(self, trajectory, reward_index):
# 统计reward
reward = []
for item in trajectory:
reward.append(item[reward_index])
# reward 标准化
# norm_reward_batch = (reward - np.mean(reward, axis=0)) / (np.std(reward, axis=0))
# 归一化
# norm_reward_batch = (reward - np.min(reward, axis=0)) / (
# np.max(reward, axis=0) - np.min(reward, axis=0)
# )
# 目标权重相同
mean_reward = np.sum(
np.clip(reward, a_min=[-500, -200], a_max=[0, 0]) / [-500, -200], axis=-1
)
# mean_reward = norm_reward_batch[:, 0]
# mean_reward = np.sum(reward, axis=-1)
# 计算折扣累积reward
trajectory_len = len(trajectory)
discount_reward = np.zeros(trajectory_len)
for index in reversed(range(trajectory_len - 1)):
discount_reward[index] = mean_reward[index] + self.args.gamma * mean_reward[index + 1]
return discount_reward
# 收集经验
def get_experience(self, seq_index):
# 多线程收集经验
pool = Pool(min(cpu_count(), self.args.experience_num))
all_record = []
for seed in range(self.args.experience_num):
record = pool.apply_async(
self.get_one_experience,
args=(
self.args,
seed,
self.agent.state_dict(),
seq_index,
self.prob,
),
)
all_record.append(record)
pool.close()
pool.join()
all_trajectory = []
all_fitness = []
for record in all_record:
trajectory, fitness = record.get()
all_trajectory.append(trajectory)
all_fitness.append(fitness)
return all_trajectory, all_fitness
# 计算baseline
def get_advantage(self, all_trajectory):
# 计算累积reward
all_reward = []
all_reward_flat = []
max_reward_len = 0
for trajectory in all_trajectory:
max_reward_len = max(max_reward_len, len(trajectory))
reward = []
for item in trajectory:
reward.append(item[2])
all_reward_flat.append(item[2])
all_reward.append(reward)
all_reward_flat = np.array(all_reward_flat)
reward_mean = np.mean(all_reward_flat, axis=0)
reward_std = np.std(all_reward_flat, axis=0)
all_discount_reward = []
for reward in all_reward:
# norm_reward = (reward - reward_mean) / (reward_std + 1e-7)
# mean_reward = np.mean(norm_reward, axis=-1)
# mean_reward = np.sum(norm_reward * [[0.2, 0.8]], axis=-1)
# mean_reward = np.sum(norm_reward * [[0.8, 0.2]], axis=-1)
# mean_reward = np.sum(norm_reward * [[1, 0]], axis=-1)
# mean_reward = np.sum(norm_reward * [[0, 1]], axis=-1)
# mean_reward = np.sum(np.array(reward) * np.array([[1 / 600, 1 / 50]]), axis=-1)
mean_reward = np.sum(
(np.clip(reward, a_min=[-500, -200], a_max=[0, 0]) - [-500, -200]) / [500, 200],
axis=-1,
)
reward_len = len(reward)
discount_reward = np.zeros(reward_len)
for index in reversed(range(reward_len - 1)):
discount_reward[index] = (
mean_reward[index] + self.args.gamma * mean_reward[index + 1]
)
all_discount_reward.append(discount_reward)
# padding
all_padded_discount_reward = [
np.concatenate([discount_reward, np.zeros(max_reward_len - len(discount_reward))])
for discount_reward in all_discount_reward
]
# 计算baseline
baseline = np.mean(all_padded_discount_reward, axis=0)
# 计算advantage
all_advantage = [
discount_reward - baseline[: len(discount_reward)]
for discount_reward in all_discount_reward
]
return all_advantage
def train(self):
optimizer = optim.AdamW(self.agent.parameters(), lr=self.args.lr)
best_fitness = [np.array([np.inf, np.inf])] * self.args.job_seq_num
i_episode = 0
EP = []
fitness_list = []
for epoch in range(self.args.epoch):
for seq_index in range(self.args.job_seq_num):
# 收集经验
all_trajectory, all_fitness = self.get_experience(seq_index)
all_obs = []
all_action = []
for trajectory in all_trajectory:
_obs = []
_action = []
for item in trajectory:
_obs.append(item[0])
_action.append(item[1])
all_obs.append(_obs)
all_action.append(_action)
# 结果汇总
mean_fitness = -np.mean(all_fitness, axis=0)
print(f"train epoch {epoch} seq_index {seq_index} i_episode {i_episode}")
print("mean_fitness: ", mean_fitness)
# writer.add_scalar(
# "current/ws_score",
# mean_fitness[0] / 600 + mean_fitness[1] / 50,
# i_episode,
# )
fitness_list.append(mean_fitness)
# 记录fitness
writer.add_scalar("current/duration_score", mean_fitness[0], i_episode)
writer.add_scalar("current/balance_score", mean_fitness[1], i_episode)
# 记录 mean fitness
fitness_mean = np.mean(fitness_list[-args.job_seq_num :], axis=0)
writer.add_scalar("mean/duration_score", fitness_mean[0], i_episode)
writer.add_scalar("mean/balance_score", fitness_mean[1], i_episode)
# 记录最优非支配曲面
d_n = 0
remove_list = []
for item in EP:
_, item_fitness = item
if np.all(fitness_mean < item_fitness):
remove_list.append(item)
if np.all(fitness_mean > item_fitness):
d_n += 1
if d_n != 0:
break
if d_n == 0:
for item in remove_list:
EP.remove(item)
EP.append((i_episode, fitness_mean))
# 打印曲面
EP_fitness = np.array([i[1] for i in EP])
x = EP_fitness[:, 1]
y = EP_fitness[:, 0]
figure = plt.figure(figsize=(8, 8), dpi=100)
plt.scatter(x, y, label="train")
plt.scatter(16.2658, 534.9209, label="lc")
# plt.scatter(x, y, lable="rr")
plt.scatter(66.8868, 349.5121, label="lg")
plt.scatter(17.0905, 351.4006, label="wsga")
plt.xlim((0, 250))
plt.ylim((200, 600))
plt.xlabel("balance")
plt.ylabel("duration")
plt.title("Target distribution")
plt.legend()
writer.add_figure("Target distribution", figure, i_episode)
plt.close()
# 模型保存
model_name = (
f"e{i_episode}_s{seq_index}_d{mean_fitness[0]:.4f}_b{mean_fitness[1]:.4f}"
)
model_save_path = os.path.join(model_save_dir, model_name)
torch.save(self.agent.job_actor.state_dict(), model_save_path)
# 计算advantage
all_advantage = self.get_advantage(all_trajectory)
# 训练模型
# 构建dataloader
dataset = JobShopDataset(
obs_data=all_obs,
action_data=all_action,
advantage_data=all_advantage,
)
dataloader = DataLoader(dataset, batch_size=512, shuffle=False, num_workers=10)
# 清空梯度
optimizer.zero_grad()
self.agent.train()
# 梯度累加
for batch in dataloader:
state, action_mask, action, advantage = batch
action_predict = self.agent.job_actor(state)
# 直接赋值会导致无法梯度回传
# TODO 如何把mask用上?
action_predict[action_mask == False] += -1e9
action_predict = torch.squeeze(action_predict, dim=1)
action_probs = torch.softmax(action_predict, dim=-1)
action_dist = Categorical(action_probs)
action_logprobs = action_dist.log_prob(action)
"""
优化目标是loss越小越好
advantage大于0说明该动作好要增大该动作的概率 即减小 -action_logprobs * advantage
"""
loss = -action_logprobs * advantage
# 一次梯度回传
loss.mean().backward()
# 梯度更新
optimizer.step()
i_episode += 1
# 更新随机权重
self.prob = max(self.prob - self.prob_step, self.prob)
if __name__ == "__main__":
args = parse_args()
args.method = "ws_deepjs"
args.tag = "run01"
save_dir = os.path.join(
args.save_path,
args.method,
args.tag,
)
os.makedirs(save_dir, exist_ok=True)
model_save_dir = os.path.join(save_dir, "models")
os.makedirs(model_save_dir, exist_ok=True)
# save args
args_dict = args.__dict__
args_path = os.path.join(save_dir, "args.txt")
with open(args_path, "w") as f:
for each_arg, value in args_dict.items():
f.writelines(each_arg + " : " + str(value) + "\n")
writer = SummaryWriter(os.path.join(save_dir, "log"))
inputdrive = InputDrive(args)
inputdrive.train()