-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmp_train_nn_nsga2_one.py
607 lines (512 loc) · 22.3 KB
/
mp_train_nn_nsga2_one.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
import os
import torch
import random
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from multiprocessing import Pool, cpu_count
from config.ga import *
from typing import List
from envs.datacenter_env.env import DatacenterEnv
from torch.utils.tensorboard import SummaryWriter
class Actor(nn.Module):
def __init__(self, dim_list=[126, 32, 1]):
super().__init__()
self.dim_list = dim_list
fc = []
self.param_num = 0
for i in range(len(dim_list) - 1):
fc.append(nn.Linear(dim_list[i], dim_list[i + 1]))
self.param_num += dim_list[i] * dim_list[i + 1] + dim_list[i + 1]
self.fc = nn.ModuleList(fc)
def forward(self, x):
for i in range(len(self.fc) - 1):
x = F.relu(self.fc[i](x))
x = self.fc[-1](x)
x = torch.squeeze(x, dim=-1)
return x
def update(self, weights):
weights = torch.FloatTensor(weights)
with torch.no_grad():
start = 0
for fc in self.fc:
end = start + fc.in_features * fc.out_features
fc.weight.data = weights[start:end].reshape(fc.out_features, fc.in_features)
start = end
end = start + fc.out_features
fc.bias.data = weights[start:end]
start = end
def predict(self, input, action_mask=None):
predict = self(input)
if action_mask is not None:
predict[action_mask == False] += -1e8
return torch.argmax(predict, dim=1).cpu().item()
def show(self):
with torch.no_grad():
for parameters in self.parameters():
print(parameters.numpy().flatten())
class Agent(nn.Module):
def __init__(self):
super(Agent, self).__init__()
self.job_actor = Actor()
def update(self, job_weights):
self.job_actor.update(job_weights)
def choose_action(self, obs):
(
job_res_req_rate,
job_run_time,
machines_all_occupancy_rate,
machines_run_time,
_,
action_mask,
) = obs
# to tensor
job_state = torch.tensor(np.array([*job_res_req_rate, job_run_time]), dtype=torch.float)
machines_all_occupancy_rate = torch.tensor(
np.array([machines_all_occupancy_rate]), dtype=torch.float
)
machines_run_time = torch.tensor(np.array([machines_run_time]), dtype=torch.float)
action_mask = torch.tensor(np.array([action_mask]), dtype=torch.bool)
# job_state: B*t*r, machines_state: B*n*t*r, buffer_state: B*t
B, n, t, r = machines_all_occupancy_rate.shape
machines_occupancy_rate_mean = torch.mean(machines_all_occupancy_rate, dim=1) # B*t*r
machines_occupancy_rate_std = torch.std(machines_all_occupancy_rate, dim=1) # B*t*r
job_state = job_state.reshape(B, 1, -1)
job_state = job_state.repeat(1, n, 1)
machines_occupancy_rate_mean = machines_occupancy_rate_mean.reshape(B, 1, -1)
machines_occupancy_rate_std = machines_occupancy_rate_std.reshape(B, 1, -1)
machines_state_mean = torch.cat(
(
machines_occupancy_rate_mean,
machines_occupancy_rate_std,
),
dim=-1,
)
machines_occupancy_rate = machines_all_occupancy_rate.reshape(B, n, -1)
machines_run_time = machines_run_time.reshape(B, n, -1)
machines_state_mean_std_run_time = machines_state_mean.repeat(1, n, 1)
job_input = torch.cat(
(
job_state,
machines_occupancy_rate,
machines_run_time,
machines_state_mean_std_run_time,
),
dim=-1,
) # B*n*dim2
action = self.job_actor.predict(job_input, action_mask)
return action
def show(self):
self.job_actor.show()
class Individual:
def __init__(self, job_genes=None):
self.agent = Agent()
self.param_num = self.agent.job_actor.param_num
self.job_genes = job_genes
self.train_fitness = None
self.eval_fitness = None
self.std_fitness = np.inf
self.steps = 0
def init(self):
self.job_genes = np.random.uniform(-1, 1, self.param_num)
def update(self):
self.agent.update(self.job_genes.copy())
def run_individual_in_env(id, args, genes, seq_index):
env = DatacenterEnv(args)
env.seq_index = seq_index
env.reset()
individual = Individual(genes)
individual.update()
obs = env.reset()
done = False
action_list = []
reward_list = []
while not done:
action = individual.agent.choose_action(obs)
obs, reward, done, _ = env.step(action)
action_list.append(action)
reward_list.append(reward)
if args.ga_fitness_type == "std":
# 计算标准差
machines_occupancy_rate = np.array(env.machines_occupancy_rate_record)
machines_occupancy_std = np.std(machines_occupancy_rate, axis=1)
machines_occupancy_mean_std = np.mean(machines_occupancy_std, axis=1)
std_fitness = np.sum(machines_occupancy_mean_std)
fitness = -std_fitness
elif args.ga_fitness_type == "runtime":
# 计算运行时长
machines_finish_time_record = np.array(env.machines_finish_time_record)
runtime_fitness = np.sum(machines_finish_time_record / 60) # 避免过大
fitness = -runtime_fitness
elif args.ga_fitness_type == "double":
# 计算标准差
machines_occupancy_rate = np.array(env.machines_occupancy_rate_record)
machines_occupancy_std = np.std(machines_occupancy_rate * args.res_capacity, axis=1)
machines_occupancy_mean_std = np.mean(machines_occupancy_std, axis=1)
std_fitness = np.mean(machines_occupancy_mean_std)
# 计算运行时长
machines_finish_time_record = np.array(env.machines_finish_time_record)
runtime_fitness = np.mean(machines_finish_time_record) # 避免过大
fitness = np.array([-runtime_fitness, -std_fitness])
return id, fitness
class GA:
def __init__(self, args):
self.args = args
self.p_size = args.ga_parent_size
self.c_size = args.ga_children_size
self.job_genes_len = 0
self.mutate_rate = args.ga_mutate_rate
self.mutate_scale = args.ga_mutate_scale
self.population: List[Individual] = []
self.elitism_population: List[Individual] = []
self.avg_fitness = 0
self.seq_index = 0
self.seq_num = args.job_seq_num
self.generation = 0
def setup_seed(self):
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def generate_ancestor(self):
for _ in range(self.p_size):
individual = Individual()
individual.init()
self.population.append(individual)
self.job_genes_len = individual.param_num
def inherit_ancestor(self):
"""Load genes(nn model parameters) from file."""
for i in range(self.p_size):
pth = os.path.join("model", "all_individual", str(i) + "_nn.pth")
nn = torch.load(pth)
genes = []
with torch.no_grad():
for parameters in nn.parameters():
genes.extend(parameters.numpy().flatten())
self.population.append(Individual(np.array(genes)))
def crossover(self, c1_genes, c2_genes):
"""Single point crossover."""
p1_genes = c1_genes.copy()
p2_genes = c2_genes.copy()
point = np.random.randint(0, (self.job_genes_len))
c1_genes[: point + 1] = p2_genes[: point + 1]
c2_genes[: point + 1] = p1_genes[: point + 1]
def mutate(self, c_genes):
"""Gaussian mutation with scale"""
mutation_array = np.random.random(c_genes.shape) < self.mutate_rate
mutation = np.random.normal(size=c_genes.shape)
mutation[mutation_array] *= self.mutate_scale
c_genes[mutation_array] += mutation[mutation_array]
# def elitism_selection(self):
# # 归一化
# fitness_list = []
# for individual in self.population:
# fitness_list.append(individual.train_fitness)
# fitness_list = np.array(fitness_list)
# norm_fitness_list = (fitness_list - np.min(fitness_list, axis=0)) / (
# np.max(fitness_list, axis=0) - np.min(fitness_list, axis=0)
# )
# # 权重相加排序
# norm_fitness_list = np.sum(
# norm_fitness_list * self.args.ga_fitness_wight, axis=-1
# )
# population_sorted_index = np.argsort(norm_fitness_list) # 升序取后面几位
# population_sorted_index = population_sorted_index[-self.p_size :]
# self.elitism_population = [
# self.population[index] for index in population_sorted_index
# ]
# self.avg_fitness = np.mean(fitness_list[population_sorted_index], axis=0)
# self.elitism_norm_fitness_list = norm_fitness_list[population_sorted_index]
def elitism_selection(self):
# 归一化值
fitness_list = []
for individual in self.population:
fitness_list.append(individual.train_fitness)
fitness_list = np.array(fitness_list)
norm_fitness_list = (fitness_list - np.min(fitness_list, axis=0)) / (
np.max(fitness_list, axis=0) - np.min(fitness_list, axis=0)
)
# 快速非支配排序越小越好 所以转换为正数
fm_fitness_list = -np.array(fitness_list).T
# 快速非支配排序
front_list = self.fast_non_dominated_sort(fm_fitness_list)
# 拥挤度计算
crowded_distance_list = []
for front in front_list:
front_values = fm_fitness_list[:, front]
crowded_distance = self.crowded_distance(front_values)
crowded_distance_list.append(crowded_distance)
# 精英选择
elitism_index = []
save_best_front = False
for front, crowded_distance in zip(front_list, crowded_distance_list):
# 保存最前沿模型
if not save_best_front:
best_front_population = []
for index in front:
best_front_population.append(self.population[index])
self.best_front_population = best_front_population
save_best_front = True
# 根据拥挤度排序
front = np.array(front)
sorted_index = np.argsort(crowded_distance) # 升序排序
sorted_front = front[sorted_index[::-1]] # 降序排序取拥挤度大的
# 选择精英
# 选择的个数是不是可以定义?
for index in sorted_front:
if len(elitism_index) < self.p_size:
elitism_index.append(index)
else:
break
# [0.5, 05] 权重相加排序
norm_fitness_list = np.sum(norm_fitness_list * self.args.ga_fitness_wight, axis=-1)
elitism_population = [self.population[index] for index in elitism_index]
# 检查精英变化数量
elite_change_num = len(elitism_population)
for elite in elitism_population:
if elite in self.elitism_population:
elite_change_num -= 1
self.elitism_population = elitism_population
self.fitness_list = fitness_list
self.avg_fitness = np.mean(fitness_list[elitism_index], axis=0)
self.elitism_norm_fitness_list = norm_fitness_list[elitism_index]
return elite_change_num
# 轮盘赌选择子代
def roulette_wheel_selection(self, size) -> List[Individual]:
# 值越大被取到的概率就越大
selection = []
wheel = sum(self.elitism_norm_fitness_list)
for _ in range(size):
pick = np.random.uniform(0, wheel)
current = 0
for i, individual_fitness in enumerate(self.elitism_norm_fitness_list):
current += individual_fitness
if current > pick:
selection.append(self.elitism_population[i])
break
return selection
# 随机选择
def random_select_parent(self, size):
# 随机选择两个父代
selection = random.sample(self.elitism_population, size)
return selection
# 产生子代
def generate_children(self):
children_population = []
while len(children_population) < self.c_size:
# p1, p2 = self.roulette_wheel_selection(2)
p1, p2 = self.random_select_parent(2)
c1_genes, c2_genes = p1.job_genes.copy(), p2.job_genes.copy()
self.crossover(c1_genes, c2_genes)
self.mutate(c1_genes)
self.mutate(c2_genes)
c1 = Individual(c1_genes)
c2 = Individual(c2_genes)
children_population.extend([c1, c2])
self.children_population = children_population
def save_population(self, population: list[Individual], label=""):
save_dir = os.path.join(
self.args.save_path,
self.args.method,
self.args.tag,
label,
f"g{self.generation}_{self.seq_index}",
)
os.makedirs(save_dir, exist_ok=True)
mean_fitness_list = []
for id, individual in enumerate(population):
mean_fitness = np.array(individual.train_fitness)
mean_fitness_list.append([self.generation, id, *mean_fitness.tolist()])
model_save_path = os.path.join(
save_dir, "{}_{:.5f}_{:.5f}.pth".format(id, *mean_fitness.tolist())
)
individual.update()
torch.save(individual.agent.job_actor.state_dict(), model_save_path)
mean_fitness_list = np.array(mean_fitness_list)
np.save(os.path.join(save_dir, "mean_fitness_record.npy"), mean_fitness_list)
return mean_fitness_list
# 进化
def evolve(self):
# 普通循环测试
# population = []
# for individual in self.population:
# individual = run_individual_in_env(
# self.args,
# individual.job_genes,
# self.seq_index,
# )
# population.append(individual)
# 多进程
population_num = self.args.ga_parent_size + self.args.ga_children_size
pool_num = min(cpu_count(), population_num)
print(f"use {pool_num} cup core")
pool = Pool(pool_num)
mutil_process = []
for id, individual in enumerate(self.population):
if individual.train_fitness is not None:
continue
# 在坏境中运行个体获得个体适应度
one_process = pool.apply_async(
run_individual_in_env,
args=(
id,
self.args,
individual.job_genes,
self.seq_index,
),
)
mutil_process.append(one_process)
pool.close()
pool.join()
# 收集进程结果
for one_process in mutil_process:
id, fitness = one_process.get()
self.population[id].train_fitness = fitness
# 保存所有结果
self.save_population(self.population, "all")
# 精英选择
elite_change_num = self.elitism_selection()
# 保存精英
elite_fitness_list = self.save_population(self.elitism_population, "elite")
# 子代生成
self.generate_children()
new_population = []
new_population.extend(self.elitism_population)
new_population.extend(self.children_population)
self.population = new_population
self.seq_index = (self.seq_index + 1) % self.seq_num
self.generation += 1
return elite_change_num, elite_fitness_list
# 值排序
def sort_by_values(self, values):
# 升序排序
sorted_index_list = []
for value in values:
sorted_index = np.argsort(value)
sorted_index_list.append(sorted_index)
return sorted_index_list
# 拥挤度计算
def crowded_distance(self, values):
distances = []
sorted_index_list = self.sort_by_values(values) # 升序排序
for value, sorted_index in zip(values, sorted_index_list):
distance = np.ones(len(sorted_index)) * 1e5
for i in range(1, len(sorted_index) - 1):
pre_index = sorted_index[i - 1]
curr_index = sorted_index[i]
after_index = sorted_index[i + 1]
distance[curr_index] = (value[after_index] - value[pre_index]) / (
max(value) - min(value)
)
distances.append(distance)
distances = np.array(distances)
distance = np.sum(distances, axis=0)
return distance
# 快速非支配排序
def fast_non_dominated_sort(self, values):
# 值越小越好
values11 = values[0] # 函数1解集
S = [[] for _ in range(0, len(values11))] # 存放 每个个体支配解的集合
front = [[]] # 存放群体的级别集合,一个级别对应一个[]
n = [0 for _ in range(0, len(values11))] # 每个个体被支配解的个数 即针对每个解 存放有多少好于这个解的个数
rank = [np.inf for _ in range(0, len(values11))] # 存放每个个体的级别
# 遍历每一个个体得到各个个体的被支配解个数和支配解集合
# 目标函数值越小越好
for p in range(0, len(values11)):
S[p] = [] # 该个体支配解的集合 即存放差于该解的解
n[p] = 0 # 该个体被支配的解的个数初始化为0 即找到有多少好于该解
for q in range(0, len(values11)): # 遍历每一个个体
less = 0 # 的目标函数值小于p个体的目标函数值数目
equal = 0 # 的目标函数值等于p个体的目标函数值数目
greater = 0 # 的目标函数值大于p个体的目标函数值数目
for k in range(len(values)): # 遍历每一个目标函数
if values[k][p] > values[k][q]: # 目标函数k时 q个体值小于p个体
less = less + 1 # q比p 好
if values[k][p] == values[k][q]: # 目标函数k时 p个体值等于于q个体
equal = equal + 1
if values[k][p] < values[k][q]: # 目标函数k时 q个体值大于p个体
greater = greater + 1 # q比p差
if (less + equal == len(values)) and (equal != len(values)):
n[p] = n[p] + 1 # q比好 比p好的个体个数加1
elif (greater + equal == len(values)) and (equal != len(values)):
S[p].append(q) # q比p差 存放比p差的个体解序号
# 找出Pareto最优解 即n[p]=0的个体p序号
if n[p] == 0:
rank[p] = 0 # 序号为p的个体 等级为0即最优
if p not in front[0]:
# 如果p不在第0层中 将其追加到第0层中
front[0].append(p) # 存放Pareto最优解序号
# 划分各层解
i = 0
while front[i] != []: # 如果分层集合为不为空
Q = []
for p in front[i]: # 遍历当前分层集合的各个个体p
for q in S[p]: # 遍历p个体的每个支配解q
n[q] = n[q] - 1 # 则将支配解中所有给对应的个体np-1
if n[q] == 0:
rank[q] = i + 1
if q not in Q:
Q.append(q) # 存放front=i+1的个体序号
i = i + 1 # front等级+1
front.append(Q)
del front[len(front) - 1] # 删除循环退出时i+1产生的[]
return front # 返回各层的解序号集合 类似[[1],[9],[0, 8],[7, 6],[3, 5],[2, 4]]
if __name__ == "__main__":
args = parse_args()
args.method = "nsga"
args.job_seq_num = 1
args.tag = "run05"
save_dir = os.path.join(
args.save_path,
args.method,
args.tag,
)
os.makedirs(save_dir, exist_ok=True)
# save args
args_dict = args.__dict__
args_path = os.path.join(save_dir, "args.txt")
with open(args_path, "w") as f:
for each_arg, value in args_dict.items():
f.writelines(each_arg + " : " + str(value) + "\n")
writer = SummaryWriter(os.path.join(save_dir, "log"))
ga = GA(args)
ga.setup_seed()
if args.ga_choice == "generate":
ga.generate_ancestor()
else:
ga.inherit_ancestor()
fitness_list = []
mean_best_fitness = [-np.inf] * args.ga_fitness_num
while True:
print("=" * 100)
print(f"evolve generation {ga.generation}")
elite_change_num, elite_fitness_list = ga.evolve()
# log to tensorbord
writer.add_scalar("Elite change num", elite_change_num, ga.generation)
elite_fitness_list = np.array(elite_fitness_list)
elite_fitness_list = -elite_fitness_list[:, -2:]
y = elite_fitness_list[:, 0]
x = elite_fitness_list[:, 1]
figure = plt.figure(figsize=(8, 8), dpi=100)
plt.scatter(x, y, label="train")
plt.scatter(16.2658, 534.9209, label="lc")
# plt.scatter(x, y, lable="rr")
plt.scatter(66.8868, 349.5121, label="lg")
plt.scatter(17.0905, 351.4006, label="wsga")
plt.xlim((0, 250))
plt.ylim((200, 600))
plt.xlabel("balance")
plt.ylabel("duration")
plt.title("Target distribution")
plt.legend()
writer.add_figure("Target distribution", figure, ga.generation)
plt.close()
max_elite_fitness = np.max(elite_fitness_list, axis=0)
min_elite_fitness = np.min(elite_fitness_list, axis=0)
writer.add_scalar("Balance fitness max", max_elite_fitness[1], ga.generation)
writer.add_scalar("Duration fitness max", max_elite_fitness[0], ga.generation)
writer.add_scalar("Balance fitness min", min_elite_fitness[1], ga.generation)
writer.add_scalar("Duration fitness min", min_elite_fitness[0], ga.generation)