Skip to content

Commit 8983e38

Browse files
author
zsbrown97
committed
a LOT of MCU work
1 parent 24f2f9e commit 8983e38

9 files changed

+565
-778
lines changed

Lung Cancer/Lung_Cancer.ipynb

+123
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,123 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 21,
6+
"outputs": [],
7+
"source": [
8+
"from matplotlib import pyplot as plt\n",
9+
"\n",
10+
"import numpy as np\n",
11+
"import pandas as pd"
12+
],
13+
"metadata": {
14+
"collapsed": false,
15+
"pycharm": {
16+
"name": "#%%\n"
17+
}
18+
}
19+
},
20+
{
21+
"cell_type": "code",
22+
"execution_count": 22,
23+
"outputs": [],
24+
"source": [
25+
"lc = pd.DataFrame(pd.read_csv('./survey lung cancer.csv'))"
26+
],
27+
"metadata": {
28+
"collapsed": false,
29+
"pycharm": {
30+
"name": "#%%\n"
31+
}
32+
}
33+
},
34+
{
35+
"cell_type": "code",
36+
"execution_count": 23,
37+
"outputs": [
38+
{
39+
"data": {
40+
"text/plain": " GENDER AGE SMOKING YELLOW_FINGERS ANXIETY PEER_PRESSURE \\\n0 M 69 1 2 2 1 \n1 M 74 2 1 1 1 \n2 F 59 1 1 1 2 \n3 M 63 2 2 2 1 \n4 F 63 1 2 1 1 \n.. ... ... ... ... ... ... \n304 F 56 1 1 1 2 \n305 M 70 2 1 1 1 \n306 M 58 2 1 1 1 \n307 M 67 2 1 2 1 \n308 M 62 1 1 1 2 \n\n CHRONIC DISEASE FATIGUE ALLERGY WHEEZING ALCOHOL CONSUMING \\\n0 1 2 1 2 2 \n1 2 2 2 1 1 \n2 1 2 1 2 1 \n3 1 1 1 1 2 \n4 1 1 1 2 1 \n.. ... ... ... ... ... \n304 2 2 1 1 2 \n305 1 2 2 2 2 \n306 1 1 2 2 2 \n307 1 2 2 1 2 \n308 1 2 2 2 2 \n\n COUGHING SHORTNESS OF BREATH SWALLOWING DIFFICULTY CHEST PAIN \\\n0 2 2 2 2 \n1 1 2 2 2 \n2 2 2 1 2 \n3 1 1 2 2 \n4 2 2 1 1 \n.. ... ... ... ... \n304 2 2 2 1 \n305 2 2 1 2 \n306 2 1 1 2 \n307 2 2 1 2 \n308 1 1 2 1 \n\n LUNG_CANCER \n0 YES \n1 YES \n2 NO \n3 NO \n4 NO \n.. ... \n304 YES \n305 YES \n306 YES \n307 YES \n308 YES \n\n[309 rows x 16 columns]",
41+
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>GENDER</th>\n <th>AGE</th>\n <th>SMOKING</th>\n <th>YELLOW_FINGERS</th>\n <th>ANXIETY</th>\n <th>PEER_PRESSURE</th>\n <th>CHRONIC DISEASE</th>\n <th>FATIGUE</th>\n <th>ALLERGY</th>\n <th>WHEEZING</th>\n <th>ALCOHOL CONSUMING</th>\n <th>COUGHING</th>\n <th>SHORTNESS OF BREATH</th>\n <th>SWALLOWING DIFFICULTY</th>\n <th>CHEST PAIN</th>\n <th>LUNG_CANCER</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>M</td>\n <td>69</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>YES</td>\n </tr>\n <tr>\n <th>1</th>\n <td>M</td>\n <td>74</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>YES</td>\n </tr>\n <tr>\n <th>2</th>\n <td>F</td>\n <td>59</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>1</td>\n <td>2</td>\n <td>1</td>\n <td>2</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>1</td>\n <td>2</td>\n <td>NO</td>\n </tr>\n <tr>\n <th>3</th>\n <td>M</td>\n <td>63</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>NO</td>\n </tr>\n <tr>\n <th>4</th>\n <td>F</td>\n <td>63</td>\n <td>1</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>NO</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>304</th>\n <td>F</td>\n <td>56</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>1</td>\n <td>YES</td>\n </tr>\n <tr>\n <th>305</th>\n <td>M</td>\n <td>70</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>1</td>\n <td>2</td>\n <td>YES</td>\n </tr>\n <tr>\n <th>306</th>\n <td>M</td>\n <td>58</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>YES</td>\n </tr>\n <tr>\n <th>307</th>\n <td>M</td>\n <td>67</td>\n <td>2</td>\n <td>1</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>1</td>\n <td>2</td>\n <td>YES</td>\n </tr>\n <tr>\n <th>308</th>\n <td>M</td>\n <td>62</td>\n <td>1</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>1</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>2</td>\n <td>1</td>\n <td>1</td>\n <td>2</td>\n <td>1</td>\n <td>YES</td>\n </tr>\n </tbody>\n</table>\n<p>309 rows × 16 columns</p>\n</div>"
42+
},
43+
"execution_count": 23,
44+
"metadata": {},
45+
"output_type": "execute_result"
46+
}
47+
],
48+
"source": [
49+
"lc"
50+
],
51+
"metadata": {
52+
"collapsed": false,
53+
"pycharm": {
54+
"name": "#%%\n"
55+
}
56+
}
57+
},
58+
{
59+
"cell_type": "code",
60+
"execution_count": 24,
61+
"outputs": [
62+
{
63+
"data": {
64+
"text/plain": "<matplotlib.collections.PathCollection at 0x7fd7c05ac5e0>"
65+
},
66+
"execution_count": 24,
67+
"metadata": {},
68+
"output_type": "execute_result"
69+
},
70+
{
71+
"data": {
72+
"text/plain": "<Figure size 432x288 with 1 Axes>",
73+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAD3CAYAAAAXDE8fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAMVUlEQVR4nO3df0zUhR/H8Zf8OhtIpDbqD7AfOHP5hy6bbVgR/fxOw+S4zsgfqzbWlhGt3YYFjD9si3T9Y2PNtsoY2ZzDVTZaS/qxtbSxqS1Hs/mD2mRZA1IOOcz7fP/4jvtCcqjcffjA+56Pv7r73I/3+1jPwYc7meU4jiMAgDlpXg8AAHAHgQcAowg8ABhF4AHAKAIPAEZleD3AiCNHjsjn803qvpFIZNL3nanYOTWwc2pIZOdIJKKlS5eOe2zaBN7n82nx4sWTum9XV9ek7ztTsXNqYOfUkMjOXV1dcY9xigYAjCLwAGAUgQcAowg8ABhF4AHAqGnzLprJuKX281GXTkqSTr+xypthAOAaud2wSX0Hf+jQIS1fvlw9PT2x67Zv3662tjaFw2Ft3bpVTz/9tDZs2KDnn39ep06dStrAI8a+MFe+HgCmk6lo2KRP0WRmZmrLli369782XF9frwULFqi1tVUtLS2qqanRCy+8oPPnzyc8LADg6k36FM0999yjaDSq1tZWrV+/XpLU19en48eP66233ord7o477tADDzygL7/8Un6/P+7jRSKRCd+wfy2S9TjT2dDQUErsORo7p4ZU3PnfkrV/QufgGxsbFQgEtHLlSklSNBpVQUHBZbcrKCjQmTNnJnysa/8k68m4R1LhU3B82i81sLNlyWmYa59kveGGG/Tqq6+qtrZW0WhUFy9eHDfk3d3duvnmmxN5KgDANUr4bZKlpaW69dZbtW/fPt10000qLCxUa2tr7PixY8fU0dGhRx55JNGnGiPeb5p5Fw2AmWAqGpaUt0m+9tprOnjwoCSpqalJb775pgKBgNLT05Wbm6vm5mbl5uYm46nGGHkhUudHOgCWuN2wSQV+xYoVWrFiRexyTk6Ovv7669jlxsbGhAcDACSGT7ICgFEEHgCMIvAAYBSBBwCjCDwAGEXgAcAoAg8ARhF4ADCKwAOAUQQeAIwi8ABgFIEHAKMIPAAYReABwCgCDwBGEXgAMIrAA4BRBB4AjCLwAGAUgQcAowg8ABhF4AHAKAIPAEYReAAwisADgFEEHgCMIvAAYBSBBwCjCDwAGEXgAcAoAg8ARhF4ADCKwAOAUQQeAIwi8ABgFIEHAKMIPAAYReABwCgCDwBGEXgAMIrAA4BRBB4AjCLwAGAUgQcAowg8ABhF4AHAKAIPAEYReAAwisADgFEEHgCMIvAAYBSBBwCjCDwAGEXgAcAoAg8ARhF4ADCKwAOAUQQeAIwi8ABgFIEHAKMIPAAYReABwCgCDwBGEXgAMIrAA4BRBB4AjCLwAGAUgQcAowg8ABhF4AHAKAIPAEYReAAwisADgFEEHgCMIvAAYBSBBwCjCDwAGEXgAcAoAg8ARhF4ADCKwAOAUQQeAIwi8ABgFIEHAKMIPAAYReABwCgCDwBGEXgAMIrAA4BRBB4AjCLwAGAUgQcAowg8ABhF4AHAKAIPAEYReAAwisADgFEEHgCMIvAAYBSBBwCjCDwAGEXgAcAoAg8ARhF4ADCKwAOAUQQeAIwi8ABgFIEHAKMIPAAYReABwCgCDwBGEXgAMIrAA4BRBB4AjCLwAGAUgQcAowg8ABhF4AHAKAIPAEYReAAwisADgFEEHgCMIvAAYBSBBwCjCDwAGEXgAcAoAg8ARhF4ADCKwAOAUQQeAIwi8ABgFIEHAKMIPAAYReABwCgCDwBGEXgAMIrAA4BRBB4AjCLwAGAUgQcAowg8ABhF4AHAKAIPAEYReAAwisADgFEEHgCMIvAAYBSBBwCjCDwAGEXgAcAoAg8ARhF4ADCKwAOAUQQeAIwi8ABgFIEHAKMIPAAYReABwCgCDwBGEXgAMIrAA4BRBB4AjCLwAGAUgQcAowg8ABhF4AHAKAIPAEYReAAwisADgFEEHgCMIvAAYBSBBwCjCDwAGEXgAcAoAg8ARhF4ADCKwAOAUQQeAIwi8ABgFIEHAKMIPAAYReABwCgCDwBGEXgAMIrAA4BRBB4AjCLwAGAUgQcAowg8ABiVcaUbVFdXa8mSJaqqqpIkhcNhlZeXq6ioSL/99pvy8vJity0rK1MgENC3336r9957T2lpabp06ZIqKipUVlaW9OFvqf181KWTkqTTb6xK+vMAgBvcbtgVA9/Y2Ci/36/S0lIVFRWpqalJwWBQx48fVygU0n333TfufT755BPl5uZqYGBAa9asUXFxsebNm5e0wce+MGOvJ/IAprupaNgVT9HMnTtX9fX1qqur048//qjff/9dzzzzzIT3mTdvnj788EP9+uuvys7OVnt7e1LjDgC4slmO4zhXc8MtW7bo0KFD2r17t/Lz81VbW6tjx46NOUVTV1enRYsW6c8//9QHH3yg7777Tr29vVq3bp02b96sWbNmxX38I0eOyOfzXfXg/9l1Mu6x9k23XfXjzFRDQ0OaPXu212NMKXZODamyczIbtnjx4nGvv+IpmhFPPPGEhoaGlJ+fH7tuvFM0f//9t86cOaNQKKRQKKQ//vhDL774ou68806VlpbGfXyfzxd3yPHFf3Gu7XFmpq6urpTYczR2Tg2ps3NyGtbV1RX3WNLfRTM8PKyamhr19PRIkm688UbNnz9fWVlZyX4qAMAErvo7+PFs27ZN7777buzy3XffrerqatXV1Wnz5s3KyMjQpUuXVFJSopUrVyY87Gin31g17i8p+AUrgJlgKhp21efg3ZbIj2Wp8yPd/7FzamDn1OBW//igEwAYReABwCgCDwBGEXgAMIrAA4BR0+ZdNNf6SVYAgBSJRLR06dJxj02bwAMAkotTNABgFIEHAKMIPAAYReABwCgCDwBGEXgAMGrGBf7o0aPasGHDZdd3dHTI7/crGAxqz549Hkzmnng779+/X4FAQOvWrVNDQ4Oi0agH07kj3s4j6uvrtX379imcyH3xdv7pp59UWVmpp556StXV1YpEIh5M5454O3/66adau3at/H6/PvroIw8mS76LFy8qFAqpsrJSFRUVOnDgwJjjrjTMmUF27tzprF692gkEAmOuHx4edh566CGnv7/fiUQiTnl5uXP27FmPpkyueDtfuHDBefDBB53BwUHHcRzn5Zdfdr766isvRky6eDuP2L17t/Pkk08627Ztm+LJ3BNv52g06pSVlTmnT592HMdx9uzZ45w4ccKLEZNuoq9zcXGx09fX50Qikdj/2zPd3r17na1btzqO4zi9vb3O/fffHzvmVsNm1HfwhYWF2rFjx2XXnzhxQoWFhbr++uuVlZWlu+66S52dnR5MmHzxds7KytLHH3+s6667TpL0zz//mPkkcLydJenw4cM6evSogsHgFE/lrng7nzp1Snl5edq1a5fWr1+v/v5+3Xabjb85PNHXedGiRTp//ryGh4flOM6Ef895pnjsscf00ksvxS6np6fH/tuths2owD/66KPKyLj8j1ANDAxozpw5scvZ2dkaGBiYytFcE2/ntLQ0zZ8/X5LU0tKiwcFBFRcXT/V4roi389mzZ/X222+roaHBg6ncFW/nvr4+HT58WJWVlXr//fd18OBB/fDDDx5MmHzxdpakhQsXyu/3a9WqVSopKVFubu4UT5d82dnZysnJ0cDAgKqrq1VTUxM75lbDZlTg48nJyVE4HI5dDofDY14sq6LRqJqamvT9999rx44dJr7LmcgXX3yhvr4+VVVVaefOndq/f7/a2tq8HstVeXl5WrBggYqKipSZmal7771XP//8s9djueqXX37RN998owMHDqijo0O9vb1qb2/3eqyk6Onp0caNG7VmzRo9/vjjsevdapiJwN9+++3q7u5Wf3+/hoeH1dnZqWXLlnk9lusaGhoUiUTU3NwcO1Vj2caNG9XW1qaWlhZVVVVp9erVKi8v93osVxUUFCgcDqu7u1uS1NnZqYULF3o8lbvmzJmj2bNny+fzKT09XXPnztW5c+e8Hithf/31l5599lmFQiFVVFSMOeZWwxL6o9te++yzzzQ4OKhgMKja2lo999xzchxHfr9f+fn5Xo/nipGdlyxZor1792r58uXatGmTpP8F8OGHH/Z4wuQb/XVOFaN3fv311/XKK6/IcRwtW7ZMJSUlXo/nitE7B4NBVVZWKjMzU4WFhVq7dq3X4yXsnXfe0blz59Tc3Kzm5mZJUiAQ0IULF1xrGP+aJAAYZeIUDQDgcgQeAIwi8ABgFIEHAKMIPAAYReABwCgCDwBG/RekRtfGrfcuPAAAAABJRU5ErkJggg==\n"
74+
},
75+
"metadata": {},
76+
"output_type": "display_data"
77+
}
78+
],
79+
"source": [
80+
"plt.scatter(lc['ANXIETY'], lc['LUNG_CANCER'])\n"
81+
],
82+
"metadata": {
83+
"collapsed": false,
84+
"pycharm": {
85+
"name": "#%%\n"
86+
}
87+
}
88+
},
89+
{
90+
"cell_type": "code",
91+
"execution_count": null,
92+
"outputs": [],
93+
"source": [],
94+
"metadata": {
95+
"collapsed": false,
96+
"pycharm": {
97+
"name": "#%%\n"
98+
}
99+
}
100+
}
101+
],
102+
"metadata": {
103+
"kernelspec": {
104+
"display_name": "Python 3",
105+
"language": "python",
106+
"name": "python3"
107+
},
108+
"language_info": {
109+
"codemirror_mode": {
110+
"name": "ipython",
111+
"version": 2
112+
},
113+
"file_extension": ".py",
114+
"mimetype": "text/x-python",
115+
"name": "python",
116+
"nbconvert_exporter": "python",
117+
"pygments_lexer": "ipython2",
118+
"version": "2.7.6"
119+
}
120+
},
121+
"nbformat": 4,
122+
"nbformat_minor": 0
123+
}

0 commit comments

Comments
 (0)