-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtest_isp.py
157 lines (134 loc) · 6.32 KB
/
test_isp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import rawpy
import cv2
import os
import numpy as np
from PIL import Image
from os.path import join
from metrics import psnr_calculate, ssim_calculate
from utils import AverageMeter, img2video
def raw2rgb(img_raw):
import os
Image.fromarray(img_raw, mode="I;16").save('saved.tiff')
raw_buf = rawpy.imread('saved.tiff')
os.remove('saved.tiff')
img_rgb = raw_buf.postprocess(use_auto_wb=True, no_auto_bright=False, output_bps=16, user_black=0)
img_rgb = (img_rgb.astype(np.float32) / 65535 * 255).astype(np.uint8)
return img_rgb
def _main(path, ds_path):
dirs = os.listdir(path)
frame_start = 0
frame_end = 150
row_frames = 15
H, W = 480, 640
PSNR = AverageMeter()
SSIM = AverageMeter()
marks = ['Input', 'ESTRNN-RAW', 'GT']
for dir in dirs:
if dir.endswith('.avi'):
continue
dir_path = join(path, dir)
imgs_deblur_raw = []
for i in range((frame_end - frame_start) // row_frames):
imgs_deblur_raw_row = []
for j in range(row_frames):
frame = i * row_frames + j
if frame == frame_start + 0 or frame == frame_start + 1:
frame = frame_start + 2
elif frame == frame_end - 1 or frame == frame_end - 2:
frame = frame_end - 3
img_deblur_raw_path = join(dir_path, '{:08d}_{}.tiff'.format(frame, 'estrnn-raw'))
img_deblur_raw = cv2.imread(img_deblur_raw_path, -1)
assert not img_deblur_raw is None, 'i:{}, j:{}, frame:{}'.format(i, j, frame)
imgs_deblur_raw_row.append(img_deblur_raw)
imgs_deblur_raw_row = np.concatenate(imgs_deblur_raw_row, axis=1)
assert imgs_deblur_raw_row.shape == (H, W * row_frames), imgs_deblur_raw_row.shape
imgs_deblur_raw.append(imgs_deblur_raw_row)
imgs_deblur_raw = np.concatenate(imgs_deblur_raw, axis=0)
imgs_deblur = raw2rgb(imgs_deblur_raw)
for i in range((frame_end - frame_start) // row_frames):
for j in range(row_frames):
frame = i * row_frames + j
if frame in [frame_start + 0, frame_start + 1, frame_end - 1, frame_end - 2]:
continue
img_deblur = imgs_deblur[i * H:(i + 1) * H, j * W:(j + 1) * W, ...][:, :, ::-1]
save_path = join(dir_path, '{:08d}_{}.png'.format(frame, marks[1].lower()))
cv2.imwrite(save_path, img_deblur)
img_blur_path = join(ds_path, dir, 'Blur', 'RGB', '{:08d}.png'.format(frame))
img_blur = cv2.imread(img_blur_path)
save_path = join(dir_path, '{:08d}_{}.png'.format(frame, marks[0].lower()))
cv2.imwrite(save_path, img_blur)
img_gt_path = join(ds_path, dir, 'Sharp', 'RGB', '{:08d}.png'.format(frame))
img_gt = cv2.imread(img_gt_path)
save_path = join(dir_path, '{:08d}_{}.png'.format(frame, marks[2].lower()))
cv2.imwrite(save_path, img_gt)
PSNR.update(psnr_calculate(img_deblur, img_gt))
SSIM.update(ssim_calculate(img_deblur, img_gt))
img2video(path=path, size=(3 * W, 1 * H), seq=dir, frame_start=frame_start + 2, frame_end=frame_end - 2,
marks=marks, fps=10)
print('Test PSNR : {}'.format(PSNR.avg))
print('Test SSIM : {}'.format(SSIM.avg))
# def _isp_valid(path):
# frame_start = 1
# frame_end = 151
# row_frames = 15
# H, W = 480, 640
# PSNR = AverageMeter()
# SSIM = AverageMeter()
# imgs_raw = []
# for i in range((frame_end - frame_start) // row_frames):
# imgs_raw_row = []
# for j in range(row_frames):
# frame = i * row_frames + j + 1
# img_raw_path = join(path, 'Sharp', 'RAW', '{}.tiff'.format(frame))
# img_raw = cv2.imread(img_raw_path, -1)
# imgs_raw_row.append(img_raw)
# imgs_row = np.concatenate(imgs_raw_row, axis=1)
# assert imgs_row.shape == (H, W * row_frames), imgs_row.shape
# imgs_raw.append(imgs_row)
#
# imgs_raw = np.concatenate(imgs_raw, axis=0)
# imgs = raw2rgb(imgs_raw)
#
# for i in range((frame_end - frame_start) // row_frames):
# for j in range(row_frames):
# frame = i * row_frames + j + 1
# img = imgs[i * H:(i + 1) * H, j * W:(j + 1) * W, ...][:, :, ::-1]
# save_path = join(path, 'Sharp', 'RGB', '{}_{}.png'.format(frame, 'pyisp'))
# cv2.imwrite(save_path, img)
#
# img_gt_path = join(path, 'Sharp', 'RGB', '{}.png'.format(frame))
# img_gt = cv2.imread(img_gt_path)
#
# PSNR.update(psnr_calculate(img, img_gt))
# SSIM.update(ssim_calculate(img, img_gt))
#
# print('Test PSNR : {}'.format(PSNR.avg))
# print('Test SSIM : {}'.format(SSIM.avg))
# def rebuild_test(ds_path, src_path):
# import shutil
# dirs = os.listdir(ds_path)
# for dir in dirs:
# dir_num = int(dir)
# src_dir = '_Scene{}'.format(dir_num + 1)
# src_dir_path = join(src_path, src_dir)
# assert os.path.exists(src_dir_path), src_dir_path
# for set_type in ['Blur', 'Sharp']:
# for data_format in ['RAW', 'RGB']:
# sub_src_dir_path = join(src_dir_path, set_type, data_format)
# for i in range(101, 151):
# src_img = '{}.png'.format(i) if data_format == 'RGB' else '{}.tiff'.format(i)
# ds_img = '{:08d}.png'.format(i - 1) if data_format == 'RGB' else '{:08d}.tiff'.format(i - 1)
# src_img_path = join(sub_src_dir_path, src_img)
# assert os.path.exists(src_img_path)
# ds_img_path = join(ds_path, dir, set_type, data_format, ds_img)
# shutil.copy(src=src_img_path, dst=ds_img_path)
if __name__ == '__main__':
path = '../results/ESTRNN_BSD_RAW_2ms16ms_3e-4/BSD_ESTRNN-RAW_test/'
ds_path = '/home/zhong/Dataset/BSD/BSD_2ms16ms/test/'
_main(path, ds_path)
# valid_path = '/home/zhong/Desktop/scene16/'
# _isp_valid(valid_path)
# ds_config = '3ms24ms' # 1ms8ms | 2ms16ms | 3ms24ms
# ds_path = '/home/zhong/Dataset/BSD/BSD_{}/test/'.format(ds_config)
# src_path = '/home/zhong/Desktop/BSD/{}/'.format(ds_config)
# rebuild_test(ds_path, src_path)