A computational proof-chain for the Curvature–Information Principle
“Flatness and D⁻¹ concentration under 2-designs.” — A. Olevester (2025)
This repository contains the complete numerical and theoretical workflow supporting the paper
“A Universal Curvature–Information Principle: Flatness and D⁻¹ Concentration under 2-Designs.”
It reconstructs how the invariant:
Y = sqrt(d_eff - 1) · (A² / I)
emerges as a universal coupling between quantum curvature (Bures/Uhlmann geometry) and mutual information.
Each Phase (0 → 9) builds on the previous, converging to the theorem:
E[Y] = Y0 + O(D⁻¹)
Var(Y) = Θ(D⁻¹)
E[α] = O(D⁻¹)
| Path | Description |
|---|---|
src/ |
All simulation scripts (phase0_baseline.py → phase9_plus.py) |
data/ |
CSV datasets generated from simulations |
figures/ |
Auto-generated plots |
paper/ |
LaTeX sources |
scripts/ |
Build + bundling utilities |
Makefile |
Run phases, build figures, generate arXiv bundle |
| Phase | Goal | Script | Output / What it Proves |
|---|---|---|---|
| 0 – Baseline Geometry | Validate Bures/Uhlmann curvature and purity logic | phase0_baseline.py |
Initial sanity check |
| 1 – Random State Test | Haar random density matrices | phase1_random_state.py |
Y stabilizes |
| 2 – Universality Sweep | Chaotic vs structured vs twirled channels | phase2_universality_sweep.py |
Twirl → flatness restored |
| 3 – Variance Scaling | Var(Y) vs D | phase3_varY_by_D.py |
Raw D⁻¹ slope data |
| 4 – α Regression | Fit α vs 1/D | phase4_alpha_vs_invD.py |
α → 0 intercept |
| 5 – Stinespring Extension | Open quantum system evolution | phase5_stinespring.py |
Same scaling under channels |
| 6 – Theorem Validation | 2-design Weingarten sampler | phase6_theorem_perD.py |
First convergence proof |
| 7 – WLS Refinement | Weighted regression + bootstraps | phase7_wls.py |
β ≈ –1.000 |
| 8 – Bootstrap Audit | Resampling confidence check | phase8_bootstrap.py |
Robustness proven |
| 9 – Haar Final Proof (GPU) | High precision sampling | phase9_plus.py |
Final numbers used in the paper |
pip install -r requirement.txt
python src/phase0_baseline.py --trials 100
| Phase | Focus | Key Outputs | How to Run |
|---|---|---|---|
| 0 - Foundation | Analytical checks, small-system experiments, regression guards | phase0_proofs/, phase0_tests/ scripts, CSV snapshots |
Run individual scripts such as python phase0_tests/universality_suite.py; add pytest wrappers as desired. |
| 1 - Universality Sweep | Chaotic vs structured dynamics, channel noise, bootstrap CIs | phase3-out/universality_sweep.csv |
python scripts/phase1_universality.py --seed 42 (writes CSV in place). |
| 2 - Collapse Panels & Finite-Size Scaling | Extended grids, gamma fits, pooled flatness metrics | phase3-out/phase2_*, phase3-out/finite_size_gamma.csv |
python src/phase2.py --sweep --output-dir phase3-out then rerun with --plots-only to regenerate figures. |
| 3 - Alpha vs 1/D | 10M-point scaling confirming drift to zero | data/phase3_varY_by_D.csv, figures/phase3_alpha_vs_invD.png |
Produced during the Phase 2 sweep; reuse phase3-out cache or repeat the --sweep. |
| 4 - Asymptotics | Large-D extrapolation and concentration slopes | phase4-out/phase4_alpha_vs_invD.csv, PNGs |
python src/phase4_asymptotics.py --output-dir phase4-out --max-qubits 9. |
| 5 - Design Concentration | Robustness under perturbations, 2-design verification | phase5_design_concentration.py logs, tables ingested into the paper |
python src/phase5_design_concentration.py --output-dir phase5-out. |
| 6 - Fast Isotropic Asymptotics | Accelerated sampler benchmarking the D^-1 law | phase6-out/data/phase6_theorem_perD.csv, phase6-out/figures/phase6_* |
python src/phase6_fast.py --output-dir phase6-out. |
| 7 - Stinespring 2-Design | Haar isometries, variance slope confirmation | phase7-out/data/*.csv, phase7-out/figures/*.png |
python src/phase7_stinespring_2design.py --output-dir phase7-out. |
| 8 - Diagnostics | Log-log variance audits, regression plots | phase8-out/figures/phase8_var_scaling.png, phase8-out/phase8_summary.txt |
python src/phase8_diagnostics.py --output-dir phase8-out. |
| 9 - Signed Alpha CIs | Bootstrap confidence intervals, Haar extensions | phase9-out/data/*.csv, phase9-plus-haar*/figures/*.png |
python src/phase9_signed_alpha_CI.py --output-dir phase9-out and python src/phase9_plus.py --output-dir phase9-plus-haar. |
Each phase script exposes --help; adjust qubit counts, trial numbers, or output directories there when scaling experiments.
python src/phase9_plus.py --sampler haar --device gpu --nE 7-14 --trials 3000 --seeds-per-D 10 --boot-B-point 12000 --boot-B-intercept 12000 --wls --debias lodo --workers 8 --outdir phase9-plus-haar-extend
Expected output:
α@Dmax: mean=+0.2868, CI=[-0.5377,+1.1088] -> PASS
Var(Y) slope β = −0.999 [−1.004, −0.995]
make figures
Y couples three quantities of an open evolution:
A²— Bures/Uhlmann curvatureI— Mutual informationd_eff— Effective Hilbert-space dimension (inverse purity)
Under a unitary 2-design:
E[Y] = Y0 + O(D⁻¹)
Var(Y) = Θ(D⁻¹)
|α| ~ O(D⁻¹/²)
- α converges → 0 ✅ flatness
- Var(Y) follows D⁻¹ ✅ universal variance law
- Twirling restores isotropy ✅ proof of universality
If you use this repository or data:
@article{Olevester2025CurvatureInformation,
author = {Anthony Olevester},
title = {A Universal Curvature–Information Principle: Flatness and D⁻¹ Concentration under 2-Designs},
year = {2025},
doi = {10.5281/zenodo.17497059},
note = {https://pypi.org/project/quantum-unified/}
}
Anthony Olevester
📧 [email protected]
🌐 https://anthony-olevester.github.io/quantum_unified
“Flatness → Universality. Variance → D⁻¹. Civilization → Accelerated.”