
Fully open, state-of-the-art Mixture of Expert model with 1.3 billion active and 6.9 billion total parameters. All data, code, and logs released.
This repository provides an overview of all resources for the paper "OLMoE: Open Mixture-of-Experts Language Models".
- Paper: https://arxiv.org/abs/2409.02060
- Pretraining Checkpoints, Code, Data and Logs.
- SFT (Supervised Fine-Tuning) Checkpoints, Code, Data and Logs.
- DPO/KTO (Direct Preference Optimization/Kahneman-Tversky Optimization), Checkpoints, Preference Data, DPO code, KTO code and Logs.
Install the transformers
& torch
libraries and run (Transformers must be from source for this PR or until the next release):
from transformers import OlmoeForCausalLM, AutoTokenizer
import torch
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Load different ckpts via passing e.g. `revision=step10000-tokens41B`
# also check allenai/OLMoE-1B-7B-0924-SFT & allenai/OLMoE-1B-7B-0924-Instruct
model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924").to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0924")
inputs = tokenizer("Bitcoin is", return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
out = model.generate(**inputs, max_length=64)
print(tokenizer.decode(out[0]))
# > # Bitcoin is a digital currency that is created and held electronically. No one controls it. Bitcoins aren’t printed, like dollars or euros – they’re produced by people and businesses running computers all around the world, using software that solves mathematical
You can list all revisions/branches by installing huggingface-hub
& running:
from huggingface_hub import list_repo_refs
out = list_repo_refs("allenai/OLMoE-1B-7B-0924")
branches = [b.name for b in out.branches]
- Clone this OLMo branch & create an environment with its dependencies via
cd OLMo; pip install -e .
. If you want to use new features in OLMo clone from themain
branch instead. - Run
pip install git+https://github.com/Muennighoff/megablocks.git@olmoe
- Setup a config file.
configs/OLMoE-1B-7B-0924.yml
was used for the pretraining ofOLMoE-1B-7B-0924
. You can find configs from various ablations inconfigs/ablations
. - Download the data from https://hf.co/datasets/allenai/OLMoE-mix-0924, tokenize it via the command below and adapt the
paths
in your training config to point to it.
dolma tokens \
--documents ${PATH_TO_DOWNLOADED_DATA} \
--destination ${PATH_WHERE_TO_SAVE_TOKENIZED_DATA} \
--tokenizer.name_or_path 'allenai/gpt-neox-olmo-dolma-v1_5' \
--max_size '2_147_483_648' \
--seed 0 \
--tokenizer.eos_token_id 50279 \
--tokenizer.pad_token_id 1 \
--processes ${NUMBER_OF_CPU_CORES_TO_USE}
- Submit your job. We used
bash scripts/olmoe-gantry.sh
which invokes https://github.com/allenai/OLMo/blob/Muennighoff/MoE/scripts/train.py and uses beaker gantry but you will likely need to change the script to work with your setup.
- Clone this open-instruct branch & follow its setup instructions. If you want to use new features in open-instruct clone from the
main
branch instead. - SFT: Run
accelerate launch \
--mixed_precision bf16 \
--num_machines 1 \
--num_processes 8 \
--use_deepspeed \
--deepspeed_config_file configs/ds_configs/stage3_no_offloading_accelerate.conf \
open_instruct/finetune.py \
--model_name_or_path allenai/OLMoE-1B-7B-0924 \
--tokenizer_name allenai/OLMoE-1B-7B-0924 \
--use_slow_tokenizer \
--use_flash_attn \
--max_seq_length 4096 \
--preprocessing_num_workers 128 \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--learning_rate 2e-05 \
--lr_scheduler_type linear \
--warmup_ratio 0.03 \
--weight_decay 0.0 \
--num_train_epochs 2 \
--output_dir output/ \
--with_tracking \
--report_to wandb \
--logging_steps 1 \
--reduce_loss sum \
--model_revision main \
--dataset_mixer_list allenai/tulu-v3-mix-preview-4096-OLMoE 1.0 ai2-adapt-dev/daring-anteater-specialized 1.0 \
--checkpointing_steps epoch \
--add_bos
- DPO: Run
accelerate launch \
--mixed_precision bf16 \
--num_machines 1 \
--num_processes 8 \
--use_deepspeed \
--deepspeed_config_file configs/ds_configs/stage3_no_offloading_accelerate.conf \
open_instruct/dpo_tune.py \
--model_name_or_path allenai/OLMoE-1B-7B-0924-SFT \
--tokenizer_name allenai/OLMoE-1B-7B-0924-SFT \
--use_flash_attn \
--gradient_checkpointing \
--dataset_name argilla/ultrafeedback-binarized-preferences-cleaned \
--max_seq_length 4096 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 4 \
--learning_rate 5e-7 \
--lr_scheduler_type linear \
--warmup_ratio 0.1 \
--weight_decay 0. \
--num_train_epochs 3 \
--output_dir output/ \
--report_to tensorboard \
--logging_steps 1 \
--reduce_loss sum \
--add_bos \
--checkpointing_steps epoch \
--dpo_beta 0.1
- KTO: Install
trl
and run https://github.com/Muennighoff/kto/blob/master/kto.py viaWANDB_PROJECT=olmoe accelerate launch --config_file=config_8gpusdsz2_m7.yml kto.py --model_name_or_path allenai/OLMoE-1B-7B-0924-SFT --output_dir OLMoE-1B-7B-0924-SFT-KTO-3EP --report_to "wandb" --per_device_train_batch_size 4 --gradient_accumulation_steps 1 --optim rmsprop --learning_rate 5e-07 --beta 0.1 --logging_steps 1 --bf16 --sanity_check False --num_train_epochs 3
(if you want to run the Adam optimizer change to--optim adamw_torch
). We usedtrl==0.9.6
.
Evaluation during pretraining is done automatically and configured in the config file. It uses the code here: https://github.com/allenai/OLMo/tree/Muennighoff/MoE/olmo/eval.
OLMES Evals: Follow the instructions at https://github.com/allenai/OLMo-Eval/blob/51c5ba579e75ef4ce7e9b29936eaa72c1a0e99eb/olmo_eval/tasks/olmes_v0_1/README.md
DCLM Evals: Run scripts/run_dclm_evals*
and refer to instructions from https://github.com/mlfoundations/dclm
- Setup https://github.com/allenai/open-instruct/tree/olmoe-sft
- Run
sbatch scripts/adapteval.sh
after changing it as necessary / extract the commands from the script and run them one by one.
- Figure 1,
visuals/figures/overview.pdf
: Run "Main plot" inscripts/olmoe_visuals.ipynb
equivalent to this colab and add the result into this drawing to edit it further: https://docs.google.com/drawings/d/1Of9-IgvKH54zhKI_M4x5HOYEF4XUp6qaXluT3Zmv1vk/edit?usp=sharing - Figure 2,
visuals/figures/olmoe.pdf
: https://www.figma.com/design/Es8UpNHKgugMAncPWnSDuK/olmoe?node-id=0-1&t=SeuQKPlaoB12TXqe-1 (also contains some other figures used on Twitter) - Figure 3 & 25,
visuals/figures/trainingeval*pdf
: Run "During training" inscripts/olmoe_visuals.ipynb
equivalent to this colab - Figure 4 - 19, 24, 26-29,
visuals/figures/...pdf
: Run respective parts inscripts/olmoe_visuals.ipynb
equivalent to this colab - Figure 20, 21, 23, 30, 31, Table 8,
visuals/figures/...pdf
:scripts/run_moe_analysis.py
- Figure 22, 33-36
visuals/figures/...pdf
: Runscripts/run_routing_analysis.py
& thenscripts/plot_routing_analysis_v2.ipynb
/scripts/plot_routing_analysis_v2_top1.ipynb
/scripts/plot_routing_analysis_v2_cross_layer.ipynb
- Figure 32,
visuals/figures/...pdf
: Runscripts/run_routing_analysis.py
& thenscripts/plot_routing_analysis.ipynb
- Table 13:
scripts/make_table.py
- All other tables are manually created.
@misc{muennighoff2024olmoeopenmixtureofexpertslanguage,
title={OLMoE: Open Mixture-of-Experts Language Models},
author={Niklas Muennighoff and Luca Soldaini and Dirk Groeneveld and Kyle Lo and Jacob Morrison and Sewon Min and Weijia Shi and Pete Walsh and Oyvind Tafjord and Nathan Lambert and Yuling Gu and Shane Arora and Akshita Bhagia and Dustin Schwenk and David Wadden and Alexander Wettig and Binyuan Hui and Tim Dettmers and Douwe Kiela and Ali Farhadi and Noah A. Smith and Pang Wei Koh and Amanpreet Singh and Hannaneh Hajishirzi},
year={2024},
eprint={2409.02060},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.02060},
}