Skip to content

Releases: Alex-Lekov/AutoML_Alex

v2023.3.10

09 Mar 16:44
5347aa9
Compare
Choose a tag to compare

[2023.3.9]

Changed

  • Update dependencies

Fix

  • ValueError: X and y both have indexes, but they do not match.

1.3.10

07 Mar 22:04
a5b01e7
Compare
Choose a tag to compare

[1.3.10]

Fix

  • TypeError in data_prepare Outliers filter

[1.3.9]

ADD

  • Up score AutoML (Blend best top5 models in AutoML)

1.3.8

07 Mar 12:42
4790f3a
Compare
Choose a tag to compare

ADD

  • optimization DataPreproc parametrs in BestSingleModel
  • rebuild AutoML pepline (light version)

Fix

  • target encodet only cat features

1.3.7

05 Mar 00:37
a73a170
Compare
Choose a tag to compare

Fix

  • target encoder in model.opt

1.3.6

04 Mar 23:20
d47570d
Compare
Choose a tag to compare

[1.3.6]

ADD

  • add dosc on CV

[1.3.5]

Fix

  • Fix nans in targetencoder in CV

[1.3.4]

ADD

  • Target Encoding in CrossValidation
  • DenoisingAutoencoder in DataPrepare
  • Docs

1.3.1

01 Mar 23:09
33e5988
Compare
Choose a tag to compare

[1.3.1]

Fix

  • Fix import - add loguru and psutil in requirements.txt

[1.2.28]

ADD

  • Advanced Logging (logs in .automl-alex_tmp/log.log)
  • Class Optimizer
  • Pruner in optimizer
  • connection with optuna-dashboard (run > optuna-dashboard sqlite:///db.sqlite3 )
  • NumericInteractionFeatures Class in data_prepare

1.1.25

25 Feb 23:13
ad4408c
Compare
Choose a tag to compare

[1.2.25]

Fix

  • Fix save & load in AutoML

ADD

  • Metod .score() and .fit_score() in Models
  • Class CrossValidation() examples in ./examples/03_Models.ipynb

1.2.23

23 Feb 19:46
d86fc91
Compare
Choose a tag to compare

Big Update:

A big update that changes the logic of work

NEW

  • Now processing the dataset is separated from the model for ease of use when you want to process the dataset yourself
  • Separate transform allows us to save and transfer processing to new data (work in production)

ADD

  • Save & Load processing
  • Save & Load model
  • Reduce memory usage processing
  • Detect and remove outliers

AutoML itself now rebuild, so it is possible to drop the score. If the metric is important to you, you can use the previous version.

Work on progress...

1.01.11

10 Jan 23:44
901d913
Compare
Choose a tag to compare

Fix

  • score_cv_folds fix in ModelsReview
  • normalization

0.11.24

23 Nov 16:27
811c64a
Compare
Choose a tag to compare

ADD

  • multivariate TPE sampler. This algorithm captures dependencies among hyperparameters better than the previous algorithm

Fix

  • "ValueError non-broadcastable output operand..." in AutoMLRegressor