1 or 2 electrode recording
suffix:
pref_[Exp data]_[Beg record-End record]_e[electrode No. 1/2]
e.g.: whole_cell_tones_140930_21-21_e1
whole_cell_tones_[suffix]
e.g. 5 files per record. whole_cell_tones_140930_1-1_e1.pdf tone_evoked_amplitudes_140930_1-1_e1.pdf
tone_evoked_amplitudes_140930_rec1-1_e1.p tone_data_whole_cell_tones_140930_rec1-1_e1.p data_whole_cell_tones_140930_rec1-1_e1.p
whole_cell_tones_[]_.pdf
- Voltage-Time course plot
- xlabel are frequency of 15 tones
- xaxis is
- times = arange(-tbefore,tduration+tafter+dt,dt)
- tbefore = 100.# consider time before tone
- tafter = 200. # consider time after tone
- dt = 1000./rate = 1000./10000
- tduration specified in experiment. i.e. 50 ;
- ylabel is SPL and measured voltage
- dashed vline of onset and offset (0, tduration)
- ylim(minimum,maximum) are set to fit the (max, min) of all trial all tone. [it's a global minimum/maximum]
tone_evoked_amplitudes_[]_.pdf
- Amplitude-Tone Frequency (log x axis)
- blue , green , gray dash
tone_evoked_amplitudes_[]_.p
- pickle.dump( amplitude_data, open( 'tone_evoked_amplitudes_'+ddate+'_rec'+str(recs[0])+'-'+str(recs[-1])+'_e'+str(electrode)+'.p', "w" ) )
- amplitude_data : dict len=2
- 0: dict
- b'max0', :
- b'min0', :
- b'freq', : 15 tones frequency Hz
- b'spl', :
- b'vmedian0' :
- 1: dict
- b'BFexc0' :
- b'BFinh0' :
- 0: dict
data_whole_cell_tones_[]_.p
- pickle.dump( tones, open( 'data_whole_cell_tones_'+str(ddate)+'_rec'+str(int(recs[0]))+'-'+str(int(recs[-1]))+'_e'+str(electrode)+'.p', "w" ) )
- tones : list, len=15
- i : dict, len=nrep+1, keys=b'data0_0',...b'data0_avg'
- b'data0_i' :
- b'data0_avg': len=3501
- (b'data1_i' means paired recording)
- i : dict, len=nrep+1, keys=b'data0_0',...b'data0_avg'
tone_data_whole_cell_tones_140930_rec1-1_e1.p
- pickle.dump( tonedata, open( 'tone_data_whole_cell_tones_'+str(ddate)+'_rec'+str(int(recs[0]))+'-'+str(int(recs[-1]))+'_e'+str(electrode)+'.p', "w" ) )
- tonedata: dict, len=15, keys=range(15)
- list, len=4
- [order(0,...14) ,freq ,SPL , ??? ]
- 1st num is the permutation num of tones, denotes which data trace in tones it refers to
- i.e.: ax.plot(times,tones[int(tonedata[j][0])][bytes('data0_'+str(i),'ascii')],lw=1,color=c0)
- info of 15 tones
- list, len=4
(if paired there might be correlation_plots)
parameter meaning
- tones,tonedata,
- recs,
- reps, repetitions
- spls, Sound Pressure Level: num of SPL usually 1
- $ L_{p}=\ln !\left({\frac {p}{p_{0}}}\right)!
{\mathrm {Np}}=2\log {{10}}!\left({\frac {p}{p{0}}}\right)!{\mathrm {B}}=20\log {{10}}!\left({\frac {p}{p{0}}}\right)!~{\mathrm {dB}} $
- $ L_{p}=\ln !\left({\frac {p}{p_{0}}}\right)!
- freq, : num of tones, 15 here
- times = arange(-tbefore,tduration+tafter+dt,dt)
15 tones
- Baseline?
- Holding Potential (see excel)
- Resting Potential
- data15-15
- synchronizing of inhibitory inputs?
- Εxtract spike?
- Threshold
- (Quite Obvious on background Data)
- Spike timing statistics? \
- record SP timing in single trial
- plot spike timing
- Relation among spike timings?
- Basic: Correlation
- Other Time Sequence statistical methods.
- LFP information
- Exc Inh input info: timing / num
- EPSP / IPSP qualification
- Large slope up
- Small slope down ?
- Single IPSP Single EPSP (Another Exp setting in vitro)
- pos/neg nearly symmetry
- 500
$\mu V$ Height - Time course,
$\tau_{up}$ ,$\tau_{down}$
- Main Recepter type
- Exc: AMPA, sometimes NMDA
- Inh: GABA
- Summation / interaction of EPSP,IPSP
- Nonlinearity exist : roof effect (
$V<E_{exc}$ ) - Channel conductane may sum linearly, due to the tree structure of dendrites
- Nonlinearity exist : roof effect (
- Stat of EPSP and IPSP
- High Dim Nonlinear Fitting : multiple alpha funcs' summation
- alpha function : alpha(t)=@(t) A(exp(-(t-t0)/tau1)-exp(-(t-t0)/tau2))
- CRUCIAL problem: distinguish EPSP & IPSP
- 1st approximation, PSP has sharper begining edge, slower decaying edge. --critrion on slope
- When superposed,
- Correlations among EPSP and IPSP in 1@0 2@-70 settings (Current Clamping)
- 1@0 - record only IPSP
- 2@-70 record only EPSP
- Other kind of Correlation of Paired Trial?
- Rate of Failure / Success among Trials
- Reveal the all/none respond structure in respond.
Targets next step
- Algorithm Validation
- With Simulated Trace
- Input spike trains to the data. Use alpha function with different parameters as the synapse conductance function. Simulate the conductance
- With in vivo Data?
- Simultaneously get EPSP signal, IPSP signal, and composite signal . Then, use algorithms on composite signal. see if the EPSP / IPSP
- Indirectly, compare the fitting distribution of parameters and biological parameters.
- With Simulated Trace
- Algorithm Usage
- Choose suitable set of data to fit! @ rest @ 0 @ -80 , paired or single.
- If validated, it can be use to decompose rest state electric trace ! ! And get EPSP and IPSPs
- do Correlation to validate the Excitatory and Inhibitory balance and synchronize hypothesis
- Inspirations
- Gamma Rhythm may be the basis of large fluctuation in potential. Info can be extracted out about it, when we separately inspect large A alpha functions, and smaller ones .
- Balance and Simultaneous Synchrony of Excitatory and Inhibitory inputs
Questions Remained about data
- Excel of exp setting for all the record on 140930/141008 ?
- 2p_wc_wc_overview_analysisNov2014.ods is incomplete
- original data? numbering ~ exp no ~ pdf file no. What's the corresponence.