Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, VertexAI, TogetherAI, Azure, OpenAI, Groq etc.]
LiteLLM manages:
- Translate inputs to provider's
completion
,embedding
, andimage_generation
endpoints - Consistent output, text responses will always be available at
['choices'][0]['message']['content']
- Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router
- Set Budgets & Rate limits per project, api key, model LiteLLM Proxy Server (LLM Gateway)
Jump to LiteLLM Proxy (LLM Gateway) Docs
Jump to Supported LLM Providers
🚨 Stable Release: Use docker images with the -stable
tag. These have undergone 12 hour load tests, before being published. More information about the release cycle here
Support for more providers. Missing a provider or LLM Platform, raise a feature request.
Usage (Docs)
Important
LiteLLM v1.0.0 now requires openai>=1.0.0
. Migration guide here
LiteLLM v1.40.14+ now requires pydantic>=2.0.0
. No changes required.
pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-key"
messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call
response = completion(model="openai/gpt-4o", messages=messages)
# anthropic call
response = completion(model="anthropic/claude-3-sonnet-20240229", messages=messages)
print(response)
{
"id": "chatcmpl-565d891b-a42e-4c39-8d14-82a1f5208885",
"created": 1734366691,
"model": "claude-3-sonnet-20240229",
"object": "chat.completion",
"system_fingerprint": null,
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "Hello! As an AI language model, I don't have feelings, but I'm operating properly and ready to assist you with any questions or tasks you may have. How can I help you today?",
"role": "assistant",
"tool_calls": null,
"function_call": null
}
}
],
"usage": {
"completion_tokens": 43,
"prompt_tokens": 13,
"total_tokens": 56,
"completion_tokens_details": null,
"prompt_tokens_details": {
"audio_tokens": null,
"cached_tokens": 0
},
"cache_creation_input_tokens": 0,
"cache_read_input_tokens": 0
}
}
Call any model supported by a provider, with model=<provider_name>/<model_name>
. There might be provider-specific details here, so refer to provider docs for more information
Async (Docs)
from litellm import acompletion
import asyncio
async def test_get_response():
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
response = await acompletion(model="openai/gpt-4o", messages=messages)
return response
response = asyncio.run(test_get_response())
print(response)
Streaming (Docs)
liteLLM supports streaming the model response back, pass stream=True
to get a streaming iterator in response.
Streaming is supported for all models (Bedrock, Huggingface, TogetherAI, Azure, OpenAI, etc.)
from litellm import completion
response = completion(model="openai/gpt-4o", messages=messages, stream=True)
for part in response:
print(part.choices[0].delta.content or "")
# claude 2
response = completion('anthropic/claude-3-sonnet-20240229', messages, stream=True)
for part in response:
print(part)
{
"id": "chatcmpl-2be06597-eb60-4c70-9ec5-8cd2ab1b4697",
"created": 1734366925,
"model": "claude-3-sonnet-20240229",
"object": "chat.completion.chunk",
"system_fingerprint": null,
"choices": [
{
"finish_reason": null,
"index": 0,
"delta": {
"content": "Hello",
"role": "assistant",
"function_call": null,
"tool_calls": null,
"audio": null
},
"logprobs": null
}
]
}
Logging Observability (Docs)
LiteLLM exposes pre defined callbacks to send data to Lunary, MLflow, Langfuse, DynamoDB, s3 Buckets, Helicone, Promptlayer, Traceloop, Athina, Slack
from litellm import completion
## set env variables for logging tools (when using MLflow, no API key set up is required)
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key"
os.environ["HELICONE_API_KEY"] = "your-helicone-auth-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["ATHINA_API_KEY"] = "your-athina-api-key"
os.environ["OPENAI_API_KEY"] = "your-openai-key"
# set callbacks
litellm.success_callback = ["lunary", "mlflow", "langfuse", "athina", "helicone"] # log input/output to lunary, langfuse, supabase, athina, helicone etc
#openai call
response = completion(model="openai/gpt-4o", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])
LiteLLM Proxy Server (LLM Gateway) - (Docs)
Track spend + Load Balance across multiple projects
The proxy provides:
📖 Proxy Endpoints - Swagger Docs
pip install 'litellm[proxy]'
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:4000
import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
Proxy Key Management (Docs)
Connect the proxy with a Postgres DB to create proxy keys
# Get the code
git clone https://github.com/BerriAI/litellm
# Go to folder
cd litellm
# Add the master key - you can change this after setup
echo 'LITELLM_MASTER_KEY="sk-1234"' > .env
# Add the litellm salt key - you cannot change this after adding a model
# It is used to encrypt / decrypt your LLM API Key credentials
# We recommend - https://1password.com/password-generator/
# password generator to get a random hash for litellm salt key
echo 'LITELLM_SALT_KEY="sk-1234"' > .env
source .env
# Start
docker-compose up
UI on /ui
on your proxy server
Set budgets and rate limits across multiple projects
POST /key/generate
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "[email protected]", "team": "core-infra"}}'
{
"key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
"expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
}
Supported Providers (Docs)
Provider | Completion | Streaming | Async Completion | Async Streaming | Async Embedding | Async Image Generation |
---|---|---|---|---|---|---|
openai | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
azure | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
AI/ML API | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
aws - sagemaker | ✅ | ✅ | ✅ | ✅ | ✅ | |
aws - bedrock | ✅ | ✅ | ✅ | ✅ | ✅ | |
google - vertex_ai | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
google - palm | ✅ | ✅ | ✅ | ✅ | ||
google AI Studio - gemini | ✅ | ✅ | ✅ | ✅ | ||
mistral ai api | ✅ | ✅ | ✅ | ✅ | ✅ | |
cloudflare AI Workers | ✅ | ✅ | ✅ | ✅ | ||
cohere | ✅ | ✅ | ✅ | ✅ | ✅ | |
anthropic | ✅ | ✅ | ✅ | ✅ | ||
empower | ✅ | ✅ | ✅ | ✅ | ||
huggingface | ✅ | ✅ | ✅ | ✅ | ✅ | |
replicate | ✅ | ✅ | ✅ | ✅ | ||
together_ai | ✅ | ✅ | ✅ | ✅ | ||
openrouter | ✅ | ✅ | ✅ | ✅ | ||
ai21 | ✅ | ✅ | ✅ | ✅ | ||
baseten | ✅ | ✅ | ✅ | ✅ | ||
vllm | ✅ | ✅ | ✅ | ✅ | ||
nlp_cloud | ✅ | ✅ | ✅ | ✅ | ||
aleph alpha | ✅ | ✅ | ✅ | ✅ | ||
petals | ✅ | ✅ | ✅ | ✅ | ||
ollama | ✅ | ✅ | ✅ | ✅ | ✅ | |
deepinfra | ✅ | ✅ | ✅ | ✅ | ||
perplexity-ai | ✅ | ✅ | ✅ | ✅ | ||
Groq AI | ✅ | ✅ | ✅ | ✅ | ||
Deepseek | ✅ | ✅ | ✅ | ✅ | ||
anyscale | ✅ | ✅ | ✅ | ✅ | ||
IBM - watsonx.ai | ✅ | ✅ | ✅ | ✅ | ✅ | |
voyage ai | ✅ | |||||
xinference [Xorbits Inference] | ✅ | |||||
FriendliAI | ✅ | ✅ | ✅ | ✅ | ||
Galadriel | ✅ | ✅ | ✅ | ✅ |
Interested in contributing? Contributions to LiteLLM Python SDK, Proxy Server, and contributing LLM integrations are both accepted and highly encouraged! See our Contribution Guide for more details
For companies that need better security, user management and professional support
This covers:
- ✅ Features under the LiteLLM Commercial License:
- ✅ Feature Prioritization
- ✅ Custom Integrations
- ✅ Professional Support - Dedicated discord + slack
- ✅ Custom SLAs
- ✅ Secure access with Single Sign-On
LiteLLM follows the Google Python Style Guide.
We run:
- Ruff for formatting and linting checks
- Mypy + Pyright for typing 1, 2
- Black for formatting
- isort for import sorting
If you have suggestions on how to improve the code quality feel free to open an issue or a PR.
- Schedule Demo 👋
- Community Discord 💭
- Our numbers 📞 +1 (770) 8783-106 / +1 (412) 618-6238
- Our emails ✉️ [email protected] / [email protected]
- Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.
- Setup .env file in root
- Run dependant services
docker-compose up db prometheus
- (In root) create virtual environment
python -m venv .venv
- Activate virtual environment
source .venv/bin/activate
- Install dependencies
pip install -e ".[all]"
- Start proxy backend
uvicorn litellm.proxy.proxy_server:app --host localhost --port 4000 --reload
- Navigate to
ui/litellm-dashboard
- Install dependencies
npm install
- Run
npm run dev
to start the dashboard