Skip to content

CVC-Lab/HSI-MSI-Image-Fusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

16d1279 · Nov 1, 2024
Aug 21, 2024
Aug 30, 2024
Jun 3, 2024
Nov 1, 2024
Jul 28, 2024
Aug 30, 2024
Aug 23, 2024
Aug 15, 2024
Nov 1, 2024
Nov 1, 2024
Jul 27, 2024
Jul 30, 2024
Aug 15, 2024
Aug 27, 2024
Aug 30, 2024
Jul 27, 2024
Aug 21, 2024
Aug 21, 2024
Jul 30, 2024

Repository files navigation

HSI-MSI-Image-Fusion

Hyperspectral-Multispectral Image Fusion

Installation

  1. pip install requirements.txt

Directory structure

├── artifacts (contains all the intermediate output files from your experiments)
├── adversity (low-light noisy transformations to input image)
├── motion_code (Contains code for Motion Code based Multi Output Spectral Kernel GP)
├── configs (single place to control all knobs of our experiments)
├── datasets (contains all dataloaders. downloaded dataset is kept in datasets/data)
├── neural_nets (contains code for all our neural networks)
├── train_utls (contains code for all utility scripts for training)
├── noise_sweep.py (file to find best hyperparameters using Bayesian Optimization)
├── train.py
├── train_motioncode.py 
└── notebooks (contains experiments and visualization scripts, useful for tutorial and debugging)

Run experiments

  1. Adjust config in configs/
  2. Train motion code -
python -m train_motioncode.py --config configs/{dataset name}.yaml
  1. Train main segmentation model
python -m train.py --config configs/{dataset name}.yaml

About

Hyperspectral-Multispectral Image Fusion

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published