- Basic Algebra 1.1 Variables and Expressions Example 1: Simplify 2 ( x
− x + 10 2x+10−3x=−x+10.
2 3(2)−4(1)=6−4=2.
2 x=2.
4 x=4.
2 x=2 or 3 3.
1 x= 4 −4± 16+48
=1 or − 3 −3.
1.4 Inequalities Example 1: Solve 3 x − 5 < 10 3x−5<10. Explanation: Add 5: 3 x < 15 3x<15, divide: x < 5 x<5.
Example 2: Solve − 2 ≤ 4 x + 6 < 10 −2≤4x+6<10. Explanation: Subtract 6: − 8 ≤ 4 x < 4 −8≤4x<4, divide: − 2 ≤ x < 1 −2≤x<1.
- Functions 2.1 Function Basics Example 1: If f ( x ) = 2 x
7 f(3)=2(3)+1=7.
a 2 + 2 a h + h 2 (a+h) 2 =a 2 +2ah+h 2 .
2 x − 1 y=2x−1. Explanation: Slope = 2, y-intercept at ( 0 , − 1 ) (0,−1).
4−1 9−3 =2.
x 2 − 4 x + 3 y=x 2 −4x+3. Explanation: Vertex at ( 2 , − 1 ) (2,−1), opens upward.
2 ( x + 2 ) 2 − 3 y=2(x+2) 2 −3.
- Intermediate Algebra 3.1 Systems of Equations Example 1: Solve 2 x
3 y=3.
3 y=3.
3.2 Polynomials Example 1: Multiply ( x + 2 ) ( x − 3 ) (x+2)(x−3). Explanation: Use FOIL: x 2 − 3 x + 2 x − 6
x 2 − x − 6 x 2 −3x+2x−6=x 2 −x−6.
Example 2: Divide ( 3 x 3 − 2 x 2 + 4 ) ÷ ( x − 1 ) (3x 3 −2x 2 +4)÷(x−1). Explanation: Use synthetic division: Quotient
3 x 2 + x + 1 =3x 2 +x+1, remainder 5 5.
3.3 Factoring Example 1: Factor x 2 + 5 x + 6 x 2 +5x+6. Explanation: Find two numbers multiplying to 6 and adding to 5: ( x + 2 ) ( x + 3 ) (x+2)(x+3).
Example 2: Factor 9 x 2 − 16 9x 2 −16. Explanation: Difference of squares: ( 3 x − 4 ) ( 3 x + 4 ) (3x−4)(3x+4).
- Advanced Algebra 4.1 Logarithms Example 1: Solve log 2 ( x ) = 5 log 2 (x)=5. Explanation: Convert to exponential form: x = 2 5 = 32 x=2 5 =32.
Example 2: Simplify log 3 ( 81 ) − log 3 ( 9 ) log 3 (81)−log 3 (9). Explanation: Use properties: log 3 ( 81 / 9 )
2 log 3 (81/9)=log 3 (9)=2.
4.2 Complex Numbers Example 1: Simplify ( 3 + 2 i ) + ( 1 − 4 i ) (3+2i)+(1−4i). Explanation: Combine real and imaginary parts: 4 − 2 i 4−2i.
8 − i 6−4i+3i−2i 2 =8−i.
4.3 Matrices Example 1: Add [ 2 3 1 4 ] + [ 5 0 − 2 3 ] [ 2 1
3 4 ]+[ 5 −2
0 3 ]. Explanation: Result: [ 7 3 − 1 7 ] [ 7 −1
3 7 ].
Example 2: Multiply [ 1 2 3 4 ] ⋅ [ 5 6 7 8 ] [ 1 3
2 4 ]⋅[ 5 7
6 8 ]. Explanation: Result: [ 19 22 43 50 ] [ 19 43
22 50 ].
- Pre-Calculus Topics 5.1 Trigonometry Example 1: Find sin ( 4 5 ∘ ) sin(45 ∘ ). Explanation: sin ( 4 5 ∘ ) = 2 2 sin(45 ∘ )= 2 2
.
6 0 ∘ θ=60 ∘ or 30 0 ∘ 300 ∘ .
5.2 Sequences and Series Example 1: Find the 10th term of 3 , 7 , 11 , 15 , … 3,7,11,15,…. Explanation: Arithmetic sequence: a 10
39 a 10 =3+(9)(4)=39.
126 S= 1−2 2(1−2 6 ) =126.