-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhistogram2.py
242 lines (207 loc) · 7.98 KB
/
histogram2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#!/usr/bin/env python
# By Jacek Zienkiewicz and Andrew Davison, Imperial College London, 2014
# Based on original C code by Adrien Angeli, 2009
import random
import os
import sweep2
import math
import numpy as np
# Location signature class: stores a signature characterizing one location
class LocationSignature:
def __init__(self, no_bins = 72):
self.sig = [0] * no_bins
def print_signature(self):
for i in range(len(self.sig)):
print self.sig[i]
# --------------------- File management class ---------------
class SignatureContainer():
def __init__(self, size = 5):
self.size = size; # max number of signatures that can be stored
self.filenames = [];
# Fills the filenames variable with names like loc_%%.dat
# where %% are 2 digits (00, 01, 02...) indicating the location number.
for i in range(self.size):
self.filenames.append('loc_{0:02d}.dat'.format(i))
# Get the index of a filename for the new signature. If all filenames are
# used, it returns -1;
def get_free_index(self):
n = 0
while n < self.size:
if (os.path.isfile(self.filenames[n]) == False):
break
n += 1
if (n >= self.size):
return -1;
else:
return n;
# Delete all loc_%%.dat files
def delete_loc_files(self):
print "STATUS: All signature files removed."
for n in range(self.size):
if os.path.isfile(self.filenames[n]):
os.remove(self.filenames[n])
# Writes the signature to the file identified by index (e.g, if index is 1
# it will be file loc_01.dat). If file already exists, it will be replaced.
def save(self, signature, index):
filename = self.filenames[index]
if os.path.isfile(filename):
os.remove(filename)
f = open(filename, 'w')
for i in range(len(signature.sig)):
s = str(signature.sig[i]) + "\n"
f.write(s)
f.close();
# Read signature file identified by index. If the file doesn't exist
# it returns an empty signature.
def read(self, index):
ls = LocationSignature()
filename = self.filenames[index]
if os.path.isfile(filename):
f = open(filename, 'r')
for i in range(len(ls.sig)):
s = f.readline()
if (s != ''):
s = s.rstrip("\n")
ls.sig[i] = float(s)
f.close();
else:
print "WARNING: Signature does not exist."
return ls
# FILL IN: spin robot or sonar to capture a signature and store it in ls
def characterize_location(ls, interface):
sweep_val = sweep2.sweep(interface)
print("finished sweep")
for i in range(len(ls.sig)):
ls.sig[i] = sweep_val[i]
# FILL IN: compare two signatures
def compare_signatures(ls1, ls2):
dist = 0
for i in range(len(ls1.sig)):
diff = ls1.sig[i] - ls2.sig[i]
abs_diff = diff ** 2
dist += abs_diff
return dist
# This function characterizes the current location, and stores the obtained
# signature into the next available file.
def learn_location(interface):
ls = LocationSignature()
characterize_location(ls, interface)
print("CHARACTERRISED LOCATION")
idx = signatures.get_free_index();
if (idx == -1): # run out of signature files
print "\nWARNING:"
print "No signature file is available. NOTHING NEW will be learned and stored."
print "Please remove some loc_%%.dat files.\n"
return
signatures.save(ls,idx)
print "STATUS: Location " + str(idx) + " learned and saved."
# This function tries to recognize the current location.
# 1. Characterize current location
# 2. For every learned locations
# 2.1. Read signature of learned location from file
# 2.2. Compare signature to signature coming from actual characterization
# 3. Retain the learned location whose minimum distance with
# actual characterization is the smallest.
# 4. Display the index of the recognized location on the screen
def recognize_location(interface):
ls_obs = LocationSignature();
# ls_obs stores signature for current location
characterize_location(ls_obs, interface);
min_dist = 100000000000000
min_loc = 0
# FILL IN: COMPARE ls_read with ls_obs and find the best match
for idx in range(signatures.size):
print "STATUS: Comparing signature " + str(idx) + " with the observed signature."
ls_read = signatures.read(idx);
dist = compare_signatures(ls_obs, ls_read)
if dist < min_dist:
min_dist = dist
min_loc = idx
print('Min location is : ' + str(min_loc))
return min_loc
def location_obs(interface):
ls_obs = LocationSignature();
# ls_obs stores signature for current location
characterize_location(ls_obs, interface);
return ls_obs
def recognize_orientation(ls_obs, ls_compare):
print("inside recognize_orientation")
min_angle_diff = 100000000000
num_shift = 0
ls_shifted = LocationSignature()
ls_shifted.sig = ls_compare.sig
for i in range(72):
ls_shifted.sig = [ls_shifted.sig[-1]] + ls_shifted.sig[0:-1] # Shift target signature by one
#for i in range(len(ls_shifted.sig)):
# print(ls_shifted.sig[i], ls_obs.sig[i])
dist = compare_signatures(ls_shifted, ls_obs)
print('[' + str(i) + '] diff: ' + str(dist))
if dist < min_angle_diff:
# Update minimum difference and corresponding angle
min_angle_diff = dist
num_shift = i
print('minimum angle difference: ' + str(min_angle_diff))
print('shifted angle: ' + str(num_shift * 5))
return (num_shift * 5) * (math.pi / 180)
def return_depth_hist(signature):
frequency_array = [0] * 260
for i in signature:
frequency_array[int(i)] += 1
bucket_array = [0] * 13
for i in range(13):
sliced = frequency_array[i * 20 : (i+1) * 20]
bucket_array[i] = reduce(lambda x, y: x+y, sliced)
return bucket_array
# Prior to starting learning the locations, it should delete files from previous
# learning either manually or by calling signatures.delete_loc_files().
# Then, either learn a location, until all the locations are learned, or try to
# recognize one of them, if locations have already been learned.
def compare_frequency(freq1, freq2):
dist = 0
for i in range(len(freq1)):
diff = freq1[i] - freq2[i]
abs_diff = diff ** 2
dist += abs_diff
return dist
signatures = SignatureContainer(5);
frequencies = []
for i in range(signatures.size):
frequencies.append(return_depth_hist(signatures.read(i).sig))
def get_estimate_location(obs_freq):
print('observed location frequency: ')
for i in obs_freq:
print i,
min_diff = 10000000000000
likely_location = 0
# loop through each learnt location
for i in range(len(frequencies)):
# if i == 1 or i == 2:
# print('frequency for ' + str(i) + ' is: ')
# for j in frequencies[i]:
# print j,
ls_read = signatures.read(i)
learnt_freq = frequencies[i]
# Compare two frequency histograms
diff = compare_frequency(obs_freq, learnt_freq)
print('difference for ' + str(i) + ' is ' + str(diff))
if diff < min_diff:
min_diff = diff
likely_location = i
return likely_location
#signatures.delete_loc_files()
#locarray = location_obs();
#obs_freq = return_depth_hist(locarray.sig)
#print 'current location buckets'
#for i in obs_freq:
# print i,
#print
# for i in range(5):
# print(return_depth_hist(signatures.read(i).sig))
#location = get_estimate_location(obs_freq)
#print('location is ' + str(location + 1))
#print 'predicted location buckets'
#for i in (return_depth_hist(signatures.read(location).sig)):
# print i,
#print
# orientation = recognize_orientation(locarray, signatures.read(location))
# print('orientation is ' + str(orientation))