@@ -95,13 +95,13 @@ the action topology. See `actionTopology` for more discussion of the action topo
95
95
class IsActionTopology [τA : TopologicalSpace A] : Prop where
96
96
isActionTopology' : τA = actionTopology R A
97
97
98
- lemma isActionTopology [τA : TopologicalSpace A] [IsActionTopology R A] :
98
+ theorem isActionTopology [τA : TopologicalSpace A] [IsActionTopology R A] :
99
99
τA = actionTopology R A :=
100
100
IsActionTopology.isActionTopology' (R := R) (A := A)
101
101
102
102
/-- Scalar multiplication `• : R × A → A` is continuous if `R` is a topological
103
103
ring, and `A` is an `R` module with the action topology. -/
104
- lemma ActionTopology.continuousSMul : @ContinuousSMul R A _ _ (actionTopology R A) :=
104
+ theorem ActionTopology.continuousSMul : @ContinuousSMul R A _ _ (actionTopology R A) :=
105
105
-- Proof: We need to prove that the product topology is finer than the pullback
106
106
-- of the action topology. But the action topology is an Inf and thus a limit,
107
107
-- and pullback is a right adjoint, so it preserves limits.
@@ -112,16 +112,16 @@ lemma ActionTopology.continuousSMul : @ContinuousSMul R A _ _ (actionTopology R
112
112
113
113
/-- Addition `+ : A × A → A` is continuous if `R` is a topological
114
114
ring, and `A` is an `R` module with the action topology. -/
115
- lemma ActionTopology.continuousAdd : @ContinuousAdd A (actionTopology R A) _ :=
115
+ theorem ActionTopology.continuousAdd : @ContinuousAdd A (actionTopology R A) _ :=
116
116
continuousAdd_sInf <| fun _ _ ↦ by simp_all only [Set.mem_setOf_eq]
117
117
118
118
instance instIsActionTopology_continuousSMul [TopologicalSpace A] [IsActionTopology R A] :
119
119
ContinuousSMul R A := isActionTopology R A ▸ ActionTopology.continuousSMul R A
120
120
121
- lemma isActionTopology_continuousAdd [TopologicalSpace A] [IsActionTopology R A] :
121
+ theorem isActionTopology_continuousAdd [TopologicalSpace A] [IsActionTopology R A] :
122
122
ContinuousAdd A := isActionTopology R A ▸ ActionTopology.continuousAdd R A
123
123
124
- lemma actionTopology_le [τA : TopologicalSpace A] [ContinuousSMul R A] [ContinuousAdd A] :
124
+ theorem actionTopology_le [τA : TopologicalSpace A] [ContinuousSMul R A] [ContinuousAdd A] :
125
125
actionTopology R A ≤ τA := sInf_le ⟨‹ContinuousSMul R A›, ‹ContinuousAdd A›⟩
126
126
127
127
end basics
@@ -195,7 +195,7 @@ variable {B : Type*} [AddCommMonoid B] [Module R B] [τB : TopologicalSpace B]
195
195
-- this is horrible. Why isn't it easy?
196
196
-- One reason: we are rolling our own continuous linear equivs!
197
197
-- **TODO** Ask about making continuous linear equivs properly
198
- lemma iso (ehomeo : A ≃ₜ B) (elinear : A ≃ₗ[R] B) (he : ∀ a, ehomeo a = elinear a) :
198
+ theorem iso (ehomeo : A ≃ₜ B) (elinear : A ≃ₗ[R] B) (he : ∀ a, ehomeo a = elinear a) :
199
199
IsActionTopology R B where
200
200
isActionTopology' := by
201
201
simp_rw [ehomeo.symm.inducing.1 , isActionTopology R A, actionTopology, induced_sInf]
@@ -237,7 +237,7 @@ variable {B : Type*} [AddCommMonoid B] [Module R B] [aB : TopologicalSpace B] [I
237
237
238
238
/-- Every `R`-linear map between two `R`-modules with the canonical topology is continuous. -/
239
239
@[fun_prop, continuity]
240
- lemma continuous_of_distribMulActionHom (φ : A →+[R] B) : Continuous φ := by
240
+ theorem continuous_of_distribMulActionHom (φ : A →+[R] B) : Continuous φ := by
241
241
-- the proof: We know that `+ : B × B → B` and `• : R × B → B` are continuous for the action
242
242
-- topology on `B`, and two earlier theorems (`induced_continuous_smul` and
243
243
-- `induced_continuous_add`) say that hence `+` and `•` on `A` are continuous if `A`
@@ -249,11 +249,11 @@ lemma continuous_of_distribMulActionHom (φ : A →+[R] B) : Continuous φ := by
249
249
induced_continuous_add φ.toAddMonoidHom⟩
250
250
251
251
@[fun_prop, continuity]
252
- lemma continuous_of_linearMap (φ : A →ₗ[R] B) : Continuous φ :=
252
+ theorem continuous_of_linearMap (φ : A →ₗ[R] B) : Continuous φ :=
253
253
continuous_of_distribMulActionHom φ.toDistribMulActionHom
254
254
255
255
variable (R) in
256
- lemma continuous_neg (C : Type *) [AddCommGroup C] [Module R C] [TopologicalSpace C]
256
+ theorem continuous_neg (C : Type *) [AddCommGroup C] [Module R C] [TopologicalSpace C]
257
257
[IsActionTopology R C] : Continuous (fun a ↦ -a : C → C) :=
258
258
continuous_of_linearMap (LinearEquiv.neg R).toLinearMap
259
259
@@ -267,7 +267,7 @@ variable {B : Type*} [AddCommGroup B] [Module R B] [aB : TopologicalSpace B] [Is
267
267
268
268
-- Here I need the lemma about how quotients are open so I do need groups
269
269
-- because this relies on translates of an open being open
270
- lemma coinduced_of_surjective {φ : A →ₗ[R] B} (hφ : Function.Surjective φ) :
270
+ theorem coinduced_of_surjective {φ : A →ₗ[R] B} (hφ : Function.Surjective φ) :
271
271
TopologicalSpace.coinduced φ (actionTopology R A) = actionTopology R B := by
272
272
have : Continuous φ := continuous_of_linearMap φ
273
273
rw [continuous_iff_coinduced_le, isActionTopology R A, isActionTopology R B] at this
@@ -401,7 +401,7 @@ variable {A : Type*} [AddCommGroup A] [Module R A] [aA : TopologicalSpace A] [Is
401
401
variable {B : Type *} [AddCommGroup B] [Module R B] [aB : TopologicalSpace B] [IsActionTopology R B]
402
402
variable {C : Type *} [AddCommGroup C] [Module R C] [aC : TopologicalSpace C] [IsActionTopology R C]
403
403
404
- lemma Module.continuous_bilinear_of_pi_finite (ι : Type *) [Finite ι]
404
+ theorem Module.continuous_bilinear_of_pi_finite (ι : Type *) [Finite ι]
405
405
(bil : (ι → R) →ₗ[R] B →ₗ[R] C) : Continuous (fun ab ↦ bil ab.1 ab.2 : ((ι → R) × B → C)) := by
406
406
classical
407
407
have foo : (fun fb ↦ bil fb.1 fb.2 : ((ι → R) × B → C)) =
@@ -431,7 +431,7 @@ lemma Module.continuous_bilinear_of_pi_finite (ι : Type*) [Finite ι]
431
431
simp [Set.toFinite _]
432
432
433
433
-- Probably this can be beefed up to semirings.
434
- lemma Module.continuous_bilinear_of_finite_free [TopologicalSemiring R] [Module.Finite R A] [Module.Free R A]
434
+ theorem Module.continuous_bilinear_of_finite_free [TopologicalSemiring R] [Module.Finite R A] [Module.Free R A]
435
435
(bil : A →ₗ[R] B →ₗ[R] C) : Continuous (fun ab ↦ bil ab.1 ab.2 : (A × B → C)) := by
436
436
let ι := Module.Free.ChooseBasisIndex R A
437
437
let hι : Fintype ι := Module.Free.ChooseBasisIndex.fintype R A
@@ -460,7 +460,7 @@ variable {B : Type*} [AddCommGroup B] [Module R B] [aB : TopologicalSpace B] [Is
460
460
variable {C : Type *} [AddCommGroup C] [Module R C] [aC : TopologicalSpace C] [IsActionTopology R C]
461
461
462
462
-- This needs rings though
463
- lemma Module.continuous_bilinear_of_finite [Module.Finite R A]
463
+ theorem Module.continuous_bilinear_of_finite [Module.Finite R A]
464
464
(bil : A →ₗ[R] B →ₗ[R] C) : Continuous (fun ab ↦ bil ab.1 ab.2 : (A × B → C)) := by
465
465
obtain ⟨m, f, hf⟩ := Module.Finite.exists_fin' R A
466
466
let bil' : (Fin m → R) →ₗ[R] B →ₗ[R] C := bil.comp f
@@ -494,7 +494,7 @@ variable [TopologicalSpace D] [IsActionTopology R D]
494
494
open scoped TensorProduct
495
495
496
496
@[continuity, fun_prop]
497
- lemma continuous_mul'
497
+ theorem continuous_mul'
498
498
(R) [CommRing R] [TopologicalSpace R] [TopologicalRing R]
499
499
(D : Type *) [Ring D] [Algebra R D] [Module.Finite R D] [Module.Free R D] [TopologicalSpace D]
500
500
[IsActionTopology R D]: Continuous (fun ab ↦ ab.1 * ab.2 : D × D → D) := by
0 commit comments