Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion plutus-metatheory/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ $ cabal test plutus-metatheory
To build the documentation as a static site:

```
$ agda --html --html-highlight=auto --html-dir=html src/index.lagda.md
$ agda-with-stdlib --html --html-highlight=auto --html-dir=html src/index.lagda.md
$ jekyll build -s html -d html/_site
```

Expand Down
68 changes: 32 additions & 36 deletions plutus-metatheory/src/Algorithmic/Erasure.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,12 @@ title: Algorithmic.Erasure
layout: page
---
```
{-# OPTIONS --injective-type-constructors #-}

module Algorithmic.Erasure where
```

```
open import Agda.Primitive using (lzero)
open import Data.Nat using (ℕ)
open import Data.Nat using (ℕ;suc;zero)
open import Function using (_∘_;id)
open import Data.Nat using (_+_)
open import Data.Nat.Properties using (+-cancelˡ-≡)
Expand Down Expand Up @@ -55,20 +53,20 @@ open import Algorithmic.Soundness using (embCtx;embVar;emb;emb-ConstrArgs;lema-m
```

```
len⋆ : Ctx⋆ → Set
len⋆ ∅ =
len⋆ (Γ ,⋆ K) = Maybe (len⋆ Γ)
len⋆ : Ctx⋆ →
len⋆ ∅ = 0
len⋆ (Γ ,⋆ K) = suc (len⋆ Γ)

len : ∀{Φ} → Ctx Φ → Set
len ∅ =
len : ∀{Φ} → Ctx Φ →
len ∅ = 0
len (Γ ,⋆ K) = len Γ
len (Γ , A) = Maybe (len Γ)
len (Γ , A) = suc (len Γ)
```

```
eraseVar : ∀{Φ Γ}{A : Φ ⊢Nf⋆ *} → Γ ∋ A → len Γ
eraseVar Z = nothing
eraseVar (S α) = just (eraseVar α)
eraseVar : ∀{Φ Γ}{A : Φ ⊢Nf⋆ *} → Γ ∋ A → Fin (len Γ)
eraseVar Z = zero
eraseVar (S α) = suc (eraseVar α)
eraseVar (T α) = eraseVar α

eraseTC : (A : ∅ ⊢Nf⋆ Kind.♯) → ⟦ A ⟧ → TmCon
Expand Down Expand Up @@ -114,47 +112,45 @@ I need to pattern match on the term constructors
lenLemma : ∀ {Φ}(Γ : D.Ctx Φ) → len (nfCtx Γ) ≡ D.len Γ
lenLemma D.∅ = refl
lenLemma (Γ D.,⋆ J) = lenLemma Γ
lenLemma (Γ D., A) = cong Maybe (lenLemma Γ)
lenLemma (Γ D., A) = cong suc (lenLemma Γ)

lenLemma⋆ : ∀ Φ → D.len⋆ Φ ≡ len⋆ Φ
lenLemma⋆ ∅ = refl
lenLemma⋆ (Φ ,⋆ K) = cong Maybe (lenLemma⋆ Φ)
lenLemma⋆ (Φ ,⋆ K) = cong suc (lenLemma⋆ Φ)

-- these lemmas for each clause of eraseVar and erase below could be
-- avoided by using with but it would involve doing with on a long
-- string of arguments, both contexts, equality proof above, and
-- before and after versions of all arguments and all recursive calls

-- these lemmas (as stated and proved) require injectivity of type
-- constructors
lemzero : ∀{X X'}(p : Maybe {lzero} X ≡ Maybe X') → nothing ≡ subst id p nothing
lemzero : ∀{X X' : ℕ} (p : suc X ≡ suc X') → zero ≡ subst Fin p zero
lemzero refl = refl

lemsuc : ∀{X X'}(p : Maybe {lzero} X ≡ Maybe X')(q : X ≡ X')(x : X) →
just (subst id q x) ≡ subst id p (just x)
lemsuc : ∀{X X' : ℕ} (p : suc X ≡ suc X') (q : X ≡ X') (x : Fin X) →
suc (subst Fin q x) ≡ subst Fin p (suc x)
lemsuc refl refl x = refl

lem≡Ctx : ∀{Φ}{Γ Γ' : Ctx Φ} → Γ ≡ Γ' → len Γ ≡ len Γ'
lem≡Ctx refl = refl

lem-conv∋ : ∀{Φ Γ Γ'}{A A' : Φ ⊢Nf⋆ *}(p : Γ ≡ Γ')(q : A ≡ A')(x : Γ A.∋ A)
→ subst id (lem≡Ctx p) (eraseVar x) ≡ eraseVar (conv∋ p q x)
→ subst Fin (lem≡Ctx p) (eraseVar x) ≡ eraseVar (conv∋ p q x)
lem-conv∋ refl refl x = refl

sameVar : ∀{Φ Γ}{A : Φ ⊢⋆ *}(x : Γ D.∋ A)
→ D.eraseVar x ≡ subst id (lenLemma Γ) (eraseVar (nfTyVar x))
sameVar {Γ = Γ D., _} D.Z = lemzero (cong Maybe (lenLemma Γ))
→ D.eraseVar x ≡ subst Fin (lenLemma Γ) (eraseVar (nfTyVar x))
sameVar {Γ = Γ D., _} D.Z = lemzero (cong suc (lenLemma Γ))
sameVar {Γ = Γ D., _} (D.S x) = trans
(cong just (sameVar x))
(lemsuc (cong Maybe (lenLemma Γ)) (lenLemma Γ) (eraseVar (nfTyVar x)))
(cong suc (sameVar x))
(lemsuc (cong suc (lenLemma Γ)) (lenLemma Γ) (eraseVar (nfTyVar x)))
sameVar {Γ = Γ D.,⋆ _} (D.T {A = A} x) = trans
(sameVar x)
(cong (subst id (lenLemma Γ)) (lem-conv∋ refl (ren-nf S A) (T (nfTyVar x))))
(cong (subst Fin (lenLemma Γ)) (lem-conv∋ refl (ren-nf S A) (T (nfTyVar x))))

lemVar : ∀{X X'}(p : X ≡ X')(x : X) → ` (subst id p x) ≡ subst _⊢ p (` x)
lemVar : ∀{X X'}(p : X ≡ X')(x : Fin X) → ` (subst Fin p x) ≡ subst _⊢ p (` x)
lemVar refl x = refl

lemƛ : ∀{X X'}(p : X ≡ X')(q : Maybe X ≡ Maybe X')(t : Maybe X ⊢)
lemƛ : ∀{X X'}(p : X ≡ X')(q : suc X ≡ suc X')(t : suc X ⊢)
→ ƛ (subst _⊢ q t) ≡ subst _⊢ p (ƛ t)
lemƛ refl refl t = refl

Expand Down Expand Up @@ -235,7 +231,7 @@ same {Γ = Γ}(D.` x) =
trans (cong ` (sameVar x)) (lemVar (lenLemma Γ) (eraseVar (nfTyVar x)))
same {Γ = Γ} (D.ƛ t) = trans
(cong ƛ (same t))
(lemƛ (lenLemma Γ) (cong Maybe (lenLemma Γ)) (erase (nfType t)))
(lemƛ (lenLemma Γ) (cong suc (lenLemma Γ)) (erase (nfType t)))
same {Γ = Γ} (t D.· u) = trans
(cong₂ _·_ (same t) (same u))
(lem· (lenLemma Γ) (erase (nfType t)) (erase (nfType u)))
Expand Down Expand Up @@ -274,21 +270,21 @@ same {Γ = Γ} (D.case t cases) rewrite lemCase (erase (nfType t)) (erase-Cases
same'Len : ∀ {Φ}(Γ : A.Ctx Φ) → D.len (embCtx Γ) ≡ len Γ
same'Len ∅ = refl
same'Len (Γ ,⋆ J) = same'Len Γ
same'Len (Γ , A) = cong Maybe (same'Len Γ)
same'Len (Γ , A) = cong suc (same'Len Γ)

lem-Dconv∋ : ∀{Φ Γ Γ'}{A A' : Φ ⊢⋆ *}(p : Γ ≡ Γ')(q : A ≡ A')(x : Γ D.∋ A)
→ subst id (cong D.len p) (D.eraseVar x) ≡ D.eraseVar (D.conv∋ p q x)
→ subst Fin (cong D.len p) (D.eraseVar x) ≡ D.eraseVar (D.conv∋ p q x)
lem-Dconv∋ refl refl x = refl

same'Var : ∀{Φ Γ}{A : Φ ⊢Nf⋆ *}(x : Γ A.∋ A)
→ eraseVar x ≡ subst id (same'Len Γ) (D.eraseVar (embVar x))
same'Var {Γ = Γ , _} Z = lemzero (cong Maybe (same'Len Γ))
→ eraseVar x ≡ subst Fin (same'Len Γ) (D.eraseVar (embVar x))
same'Var {Γ = Γ , _} Z = lemzero (cong suc (same'Len Γ))
same'Var {Γ = Γ , _} (S x) = trans
(cong just (same'Var x))
(lemsuc (cong Maybe (same'Len Γ)) (same'Len Γ) (D.eraseVar (embVar x)))
(cong suc (same'Var x))
(lemsuc (cong suc (same'Len Γ)) (same'Len Γ) (D.eraseVar (embVar x)))
same'Var {Γ = Γ ,⋆ _} (T {A = A} x) = trans
(same'Var x)
(cong (subst id (same'Len Γ)) (lem-Dconv∋ refl (sym (ren-embNf S A))
(cong (subst Fin (same'Len Γ)) (lem-Dconv∋ refl (sym (ren-embNf S A))
(D.T (embVar x))))

same'TC : ∀ {Φ} {Γ : Ctx Φ} A (tcn : ⟦ A ⟧) →
Expand Down Expand Up @@ -326,7 +322,7 @@ same' {Γ = Γ} (` x) =
trans (cong ` (same'Var x)) (lemVar (same'Len Γ) (D.eraseVar (embVar x)))
same' {Γ = Γ} (ƛ t) = trans
(cong ƛ (same' t))
(lemƛ (same'Len Γ) (cong Maybe (same'Len Γ)) (D.erase (emb t)))
(lemƛ (same'Len Γ) (cong suc (same'Len Γ)) (D.erase (emb t)))
same' {Γ = Γ} (t · u) = trans
(cong₂ _·_ (same' t) (same' u))
(lem· (same'Len Γ) (D.erase (emb t)) (D.erase (emb u)))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,8 @@ module Algorithmic.Erasure.RenamingSubstitution where
open import Relation.Binary.PropositionalEquality using (_≡_;refl;sym;trans;subst;cong;cong₂)
open import Function using (id;_∘_)
open import Data.Vec using (Vec;_∷_;lookup)
open import Data.Fin using (Fin;toℕ)
open import Data.Fin using (Fin;toℕ;suc;zero)
open import Data.Nat using (ℕ;suc;zero)

open import Utils using (Kind;*;Maybe;nothing;just)
open import Utils.List using (List;[];_∷_)
Expand Down Expand Up @@ -38,15 +39,15 @@ open import Builtin.Constant.Type using (TyCon)
```

```
backVar⋆ : ∀{Φ}(Γ : Ctx Φ) → len Γ → Φ ⊢Nf⋆ *
backVar⋆ : ∀{Φ}(Γ : Ctx Φ) → Fin (len Γ) → Φ ⊢Nf⋆ *
backVar⋆ (Γ ,⋆ J) x = weakenNf (backVar⋆ Γ x)
backVar⋆ (Γ , A) nothing = A
backVar⋆ (Γ , A) (just x) = backVar⋆ Γ x
backVar⋆ (Γ , A) zero = A
backVar⋆ (Γ , A) (suc x) = backVar⋆ Γ x

backVar : ∀{Φ}(Γ : Ctx Φ)(x : len Γ) → Γ ∋ (backVar⋆ Γ x)
backVar : ∀{Φ}(Γ : Ctx Φ)(x : Fin (len Γ)) → Γ ∋ (backVar⋆ Γ x)
backVar (Γ ,⋆ J) x = T (backVar Γ x)
backVar (Γ , A) nothing = Z
backVar (Γ , A) (just x) = S (backVar Γ x)
backVar (Γ , A) zero = Z
backVar (Γ , A) (suc x) = S (backVar Γ x)

backVar⋆-eraseVar : ∀{Φ}{Γ : Ctx Φ}{A : Φ ⊢Nf⋆ *}(x : Γ ∋ A) →
backVar⋆ Γ (eraseVar x) ≡ A
Expand Down Expand Up @@ -85,11 +86,11 @@ backVar-eraseVar (S x) = trans
(cong S (backVar-eraseVar x))
backVar-eraseVar (T x) = trans (subst-T (backVar⋆-eraseVar x) (cong weakenNf (backVar⋆-eraseVar x)) (backVar _ (eraseVar x))) (cong T (backVar-eraseVar x))

eraseVar-backVar : ∀{Φ}(Γ : Ctx Φ)(x : len Γ) → eraseVar (backVar Γ x) ≡ x
eraseVar-backVar : ∀{Φ}(Γ : Ctx Φ)(x : Fin (len Γ)) → eraseVar (backVar Γ x) ≡ x
eraseVar-backVar ∅ ()
eraseVar-backVar (Γ ,⋆ J) x = eraseVar-backVar Γ x
eraseVar-backVar (Γ , A) nothing = refl
eraseVar-backVar (Γ , A) (just x) = cong just (eraseVar-backVar Γ x)
eraseVar-backVar (Γ , A) zero = refl
eraseVar-backVar (Γ , A) (suc x) = cong suc (eraseVar-backVar Γ x)

--

Expand All @@ -98,10 +99,10 @@ erase-Ren : ∀{Φ Ψ}{Γ : Ctx Φ}{Δ : Ctx Ψ}(ρ⋆ : ⋆.Ren Φ Ψ)
erase-Ren ρ⋆ ρ i = eraseVar (ρ (backVar _ i))

ext-erase : ∀{Φ Ψ}{Γ : Ctx Φ}{Δ : Ctx Ψ}(ρ⋆ : ⋆.Ren Φ Ψ)
→ (ρ : A.Ren ρ⋆ Γ Δ){A : Φ ⊢Nf⋆ *}(α : len (Γ , A))
→ (ρ : A.Ren ρ⋆ Γ Δ){A : Φ ⊢Nf⋆ *}(α : Fin (len (Γ , A)))
→ erase-Ren ρ⋆ (A.ext ρ⋆ ρ {B = A}) α ≡ U.lift (erase-Ren ρ⋆ ρ) α
ext-erase ρ⋆ ρ nothing = refl
ext-erase ρ⋆ ρ (just α) = refl
ext-erase ρ⋆ ρ zero = refl
ext-erase ρ⋆ ρ (suc α) = refl

conv∋-erase : ∀{Φ}{Γ : Ctx Φ}{A A' : Φ ⊢Nf⋆ *}
→ (p : A ≡ A')
Expand All @@ -116,7 +117,7 @@ conv⊢-erase : ∀{Φ}{Γ : Ctx Φ}{A A' : Φ ⊢Nf⋆ *}
conv⊢-erase refl t = refl

ext⋆-erase : ∀{Φ Ψ K}{Γ : Ctx Φ}{Δ : Ctx Ψ}(ρ⋆ : ⋆.Ren Φ Ψ)
→ (ρ : A.Ren ρ⋆ Γ Δ)(α : len Γ)
→ (ρ : A.Ren ρ⋆ Γ Δ)(α : Fin (len Γ))
→ erase-Ren (⋆.ext ρ⋆ {K = K}) (A.ext⋆ ρ⋆ ρ) α ≡ erase-Ren ρ⋆ ρ α
ext⋆-erase {Γ = Γ} ρ⋆ ρ α = conv∋-erase
(trans (sym (renNf-comp (backVar⋆ Γ α))) (renNf-comp (backVar⋆ Γ α)))
Expand Down Expand Up @@ -202,23 +203,23 @@ cong-erase-sub σ⋆ σ refl x .x refl = refl

exts-erase : ∀ {Φ Ψ}{Γ Δ}(σ⋆ : SubNf Φ Ψ)(σ : A.Sub σ⋆ Γ Δ)
→ {B : Φ ⊢Nf⋆ *}
→ (α : Maybe (len Γ))
→ (α : Fin (suc (len Γ)))
→ erase-Sub σ⋆ (A.exts σ⋆ σ {B}) α ≡ U.lifts (erase-Sub σ⋆ σ) α
exts-erase σ⋆ σ nothing = refl
exts-erase {Γ = Γ}{Δ} σ⋆ σ {B} (just α) = trans
exts-erase σ⋆ σ zero = refl
exts-erase {Γ = Γ}{Δ} σ⋆ σ {B} (suc α) = trans
(conv⊢-erase
(renNf-id (subNf σ⋆ (backVar⋆ Γ α)))
(A.ren id (conv∋ refl (sym (renNf-id _)) ∘ S) (σ (backVar Γ α))))
(trans (ren-erase id (conv∋ refl (sym (renNf-id _)) ∘ S) (σ (backVar Γ α)))
(U.ren-cong (λ β → trans
(conv∋-erase (sym (renNf-id _)) (S (backVar Δ β)))
(cong just (eraseVar-backVar Δ β)))
(cong suc (eraseVar-backVar Δ β)))
(erase (σ (backVar Γ α)))))

exts⋆-erase : ∀ {Φ Ψ}{Γ Δ}(σ⋆ : SubNf Φ Ψ)(σ : A.Sub σ⋆ Γ Δ)
→ {B : Φ ⊢Nf⋆ *}
→ ∀{K}
→ (α : len Γ)
→ (α : Fin (len Γ))
→ erase-Sub (extsNf σ⋆ {K}) (A.exts⋆ σ⋆ σ) α ≡ erase-Sub σ⋆ σ α
exts⋆-erase {Γ = Γ}{Δ} σ⋆ σ {B} α = trans
(conv⊢-erase
Expand Down Expand Up @@ -315,8 +316,8 @@ lem[] : ∀{Φ}{Γ : Ctx Φ}{A B : Φ ⊢Nf⋆ *}(N : Γ , A ⊢ B)(W : Γ ⊢ A
lem[] {Γ = Γ}{A = A}{B} N W = trans
(trans
(U.sub-cong
(λ{ nothing → sym (conv⊢-erase (sym (subNf-id A)) W)
; (just α) → trans
(λ{ zero → sym (conv⊢-erase (sym (subNf-id A)) W)
; (suc α) → trans
(cong ` (sym (eraseVar-backVar Γ α)))
(sym (conv⊢-erase (sym (subNf-id (backVar⋆ Γ α))) (` (backVar Γ α))))})
(erase N))
Expand Down
42 changes: 21 additions & 21 deletions plutus-metatheory/src/Declarative/Erasure.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,8 @@ module Declarative.Erasure where
## Imports

```
open import Data.Nat using (ℕ)
open import Data.Fin using (toℕ)
open import Data.Nat using (ℕ;suc;zero)
open import Data.Fin using (Fin;suc;zero;toℕ)
open import Data.Empty using (⊥)
open import Data.Vec using (Vec)
open import Data.Unit using (tt)
Expand Down Expand Up @@ -39,23 +39,23 @@ open import Algorithmic using (ty≅sty₁)
```

```
len : ∀{Φ} → Ctx Φ → Set
len ∅ =
len : ∀{Φ} → Ctx Φ →
len ∅ = 0
len (Γ ,⋆ K) = len Γ
len (Γ , A) = Maybe (len Γ)
len (Γ , A) = suc (len Γ)

lenI : ∀{Φ} → Ctx Φ → Set
lenI ∅ =
lenI (Γ ,⋆ K) = Maybe (lenI Γ)
lenI (Γ , A) = Maybe (lenI Γ)
lenI : ∀{Φ} → Ctx Φ →
lenI ∅ = 0
lenI (Γ ,⋆ K) = suc (lenI Γ)
lenI (Γ , A) = suc (lenI Γ)

len⋆ : Ctx⋆ → Set
len⋆ ∅ =
len⋆ (Γ ,⋆ K) = Maybe (len⋆ Γ)
len⋆ : Ctx⋆ →
len⋆ ∅ = 0
len⋆ (Γ ,⋆ K) = suc (len⋆ Γ)

eraseVar : ∀{Φ Γ}{A : Φ ⊢⋆ *} → Γ ∋ A → len Γ
eraseVar Z = nothing
eraseVar (S α) = just (eraseVar α)
eraseVar : ∀{Φ Γ}{A : Φ ⊢⋆ *} → Γ ∋ A → Fin (len Γ)
eraseVar Z = zero
eraseVar (S α) = suc (eraseVar α)
eraseVar (T α) = eraseVar α

eraseTC : (A : ∅ ⊢⋆ ♯) → ⟦ A ⟧d → TmCon
Expand Down Expand Up @@ -94,15 +94,15 @@ erase (error A) = error
erase (constr e Tss p cs) = constr (toℕ e) (erase-ConstrArgs cs)
erase (case t cases) = case (erase t) (erase-Cases cases)

backVar⋆ : ∀{Φ}(Γ : Ctx Φ) → len Γ → Φ ⊢⋆ *
backVar⋆ : ∀{Φ}(Γ : Ctx Φ) → Fin (len Γ) → Φ ⊢⋆ *
backVar⋆ (Γ ,⋆ J) x = T.weaken (backVar⋆ Γ x)
backVar⋆ (Γ , A) nothing = A
backVar⋆ (Γ , A) (just x) = backVar⋆ Γ x
backVar⋆ (Γ , A) zero = A
backVar⋆ (Γ , A) (suc x) = backVar⋆ Γ x

backVar : ∀{Φ}(Γ : Ctx Φ)(x : len Γ) → Γ ∋ (backVar⋆ Γ x)
backVar : ∀{Φ}(Γ : Ctx Φ)(x : Fin (len Γ)) → Γ ∋ (backVar⋆ Γ x)
backVar (Γ ,⋆ J) x = T (backVar Γ x)
backVar (Γ , A) nothing = Z
backVar (Γ , A) (just x) = S (backVar Γ x)
backVar (Γ , A) zero = Z
backVar (Γ , A) (suc x) = S (backVar Γ x)

erase-Sub σ⋆ σ i = erase (σ (backVar _ i))
```
6 changes: 3 additions & 3 deletions plutus-metatheory/src/Evaluator/Program.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ parsePLC namedprog = do
-- ^ FIXME: this should have an interface that guarantees that the
-- shifter is run

parseUPLC : ProgramNU → Either ERROR ( U.⊢)
parseUPLC : ProgramNU → Either ERROR (0 U.⊢)
parseUPLC namedprog = do
prog ← withE (ERROR.scopeError ∘ freeVariableError) $ deBruijnifyU namedprog
withE scopeError $ U.scopeCheckU0 (convPU prog)
Expand Down Expand Up @@ -177,7 +177,7 @@ showUPLCResult (□ V) = return $ prettyPrintUTm (U.extricateU0 (U.discharge V))
showUPLCResult ◆ = inj₁ (runtimeError userError)
showUPLCResult _ = inj₁ (runtimeError gasError)

executeUPLCwithMP : ∀{A} → RawCostModel → (CostModel → MachineParameters A) → (A → String) → U.⊢ → Either ERROR String
executeUPLCwithMP : ∀{A} → RawCostModel → (CostModel → MachineParameters A) → (A → String) → 0 U.⊢ → Either ERROR String
executeUPLCwithMP (cekMachineCosts , rawmodel) mkMP report t with createMap rawmodel
... | just model = do
let machineparam = mkMP (cekMachineCosts , model)
Expand All @@ -187,7 +187,7 @@ executeUPLCwithMP (cekMachineCosts , rawmodel) mkMP report t with createMap rawm
return (r ++ report exBudget)
... | nothing = inj₁ (jsonError "while processing parameters.")

executeUPLC : BudgetMode RawCostModel → U.⊢ → Either ERROR String
executeUPLC : BudgetMode RawCostModel → 0 U.⊢ → Either ERROR String
executeUPLC Silent t = (withE runtimeError $ U.stepper maxsteps (ε ; [] ▻ t)) >>= showUPLCResult
executeUPLC (Counting rcm) t = executeUPLCwithMP rcm machineParameters countingReport t
executeUPLC (Tallying rcm) t = executeUPLCwithMP rcm tallyingMachineParameters tallyingReport t
Expand Down
12 changes: 6 additions & 6 deletions plutus-metatheory/src/MAlonzo/Code/Algorithmic.hs
Original file line number Diff line number Diff line change
Expand Up @@ -48,10 +48,10 @@ data T_'9839'Kinded_40
= C_'9839'_42 | C_K'9839'_48 T_'9839'Kinded_40
-- Algorithmic.lemma♯Kinded
d_lemma'9839'Kinded_58 ::
MAlonzo.Code.Utils.T_Kind_652 ->
MAlonzo.Code.Utils.T_Kind_652 ->
MAlonzo.Code.Utils.T_Kind_652 ->
MAlonzo.Code.Utils.T_Kind_652 ->
MAlonzo.Code.Utils.T_Kind_682 ->
MAlonzo.Code.Utils.T_Kind_682 ->
MAlonzo.Code.Utils.T_Kind_682 ->
MAlonzo.Code.Utils.T_Kind_682 ->
T_'9839'Kinded_40 ->
MAlonzo.Code.Type.BetaNormal.T__'8866'Ne'8902'__6 ->
MAlonzo.Code.Data.Irrelevant.T_Irrelevant_20
Expand Down Expand Up @@ -154,11 +154,11 @@ data T__'8866'__178
C__'183'__196 MAlonzo.Code.Type.BetaNormal.T__'8866'Nf'8902'__4
T__'8866'__178 T__'8866'__178 |
C_Λ_202 T__'8866'__178 |
C__'183''8902'_'47'__212 MAlonzo.Code.Utils.T_Kind_652
C__'183''8902'_'47'__212 MAlonzo.Code.Utils.T_Kind_682
MAlonzo.Code.Type.BetaNormal.T__'8866'Nf'8902'__4 T__'8866'__178
MAlonzo.Code.Type.BetaNormal.T__'8866'Nf'8902'__4 |
C_wrap_220 T__'8866'__178 |
C_unwrap_230 MAlonzo.Code.Utils.T_Kind_652
C_unwrap_230 MAlonzo.Code.Utils.T_Kind_682
MAlonzo.Code.Type.BetaNormal.T__'8866'Nf'8902'__4
MAlonzo.Code.Type.BetaNormal.T__'8866'Nf'8902'__4 T__'8866'__178 |
C_constr_240 MAlonzo.Code.Data.Fin.Base.T_Fin_10
Expand Down
Loading