RiskOptima is a comprehensive Python toolkit for evaluating, managing, and optimizing investment portfolios. This package is designed to empower investors and data scientists by combining financial risk analysis, backtesting, mean-variance optimization, and machine learning capabilities into a single, cohesive package.
https://pypistats.org/packages/riskoptima
- Portfolio Optimization: Includes mean-variance optimization, efficient frontier calculation, and maximum Sharpe ratio portfolio construction.
- Risk Management: Compute key financial risk metrics such as Value at Risk (VaR), Conditional Value at Risk (CVaR), volatility, and drawdowns.
- Backtesting Framework: Simulate historical performance of investment strategies and analyze portfolio dynamics over time.
- Machine Learning Integration: Future-ready for implementing machine learning models for predictive analytics and advanced portfolio insights.
- Monte Carlo Simulations: Perform extensive simulations to analyze potential portfolio outcomes. See example here https://github.com/JordiCorbilla/efficient-frontier-monte-carlo-portfolio-optimization
- Comprehensive Financial Metrics: Calculate returns, Sharpe ratios, covariance matrices, and more.
See the project here: https://pypi.org/project/riskoptima/
pip install riskoptima
Create your portfolio table similar to the below:
Asset | Weight | Label | MarketCap |
---|---|---|---|
MO | 0.04 | Altria Group Inc. | 110.0e9 |
NWN | 0.14 | Northwest Natural Gas | 1.8e9 |
BKH | 0.01 | Black Hills Corp. | 4.5e9 |
ED | 0.01 | Con Edison | 30.0e9 |
PEP | 0.09 | PepsiCo Inc. | 255.0e9 |
NFG | 0.16 | National Fuel Gas | 5.6e9 |
KO | 0.06 | Coca-Cola Company | 275.0e9 |
FRT | 0.28 | Federal Realty Inv. Trust | 9.8e9 |
GPC | 0.16 | Genuine Parts Co. | 25.3e9 |
MSEX | 0.05 | Middlesex Water Co. | 2.4e9 |
import pandas as pd
from riskoptima import RiskOptima
import warnings
warnings.filterwarnings(
"ignore",
category=FutureWarning,
message=".*DataFrame.std with axis=None is deprecated.*"
)
# Define your current porfolio with your weights and company names
asset_data = [
{"Asset": "MO", "Weight": 0.04, "Label": "Altria Group Inc.", "MarketCap": 110.0e9},
{"Asset": "NWN", "Weight": 0.14, "Label": "Northwest Natural Gas", "MarketCap": 1.8e9},
{"Asset": "BKH", "Weight": 0.01, "Label": "Black Hills Corp.", "MarketCap": 4.5e9},
{"Asset": "ED", "Weight": 0.01, "Label": "Con Edison", "MarketCap": 30.0e9},
{"Asset": "PEP", "Weight": 0.09, "Label": "PepsiCo Inc.", "MarketCap": 255.0e9},
{"Asset": "NFG", "Weight": 0.16, "Label": "National Fuel Gas", "MarketCap": 5.6e9},
{"Asset": "KO", "Weight": 0.06, "Label": "Coca-Cola Company", "MarketCap": 275.0e9},
{"Asset": "FRT", "Weight": 0.28, "Label": "Federal Realty Inv. Trust", "MarketCap": 9.8e9},
{"Asset": "GPC", "Weight": 0.16, "Label": "Genuine Parts Co.", "MarketCap": 25.3e9},
{"Asset": "MSEX", "Weight": 0.05, "Label": "Middlesex Water Co.", "MarketCap": 2.4e9}
]
asset_table = pd.DataFrame(asset_data)
capital = 100_000
asset_table['Portfolio'] = asset_table['Weight'] * capital
ANALYSIS_START_DATE = RiskOptima.get_previous_year_date(RiskOptima.get_previous_working_day(), 1)
ANALYSIS_END_DATE = RiskOptima.get_previous_working_day()
BENCHMARK_INDEX = 'SPY'
RISK_FREE_RATE = 0.05
NUMBER_OF_WEIGHTS = 10_000
NUMBER_OF_MC_RUNS = 1_000
If you want to know visually how's your portfolio doing right now
RiskOptima.create_portfolio_area_chart(
asset_table,
end_date=ANALYSIS_END_DATE,
lookback_days=2,
title="Portfolio Area Chart"
)
RiskOptima.plot_efficient_frontier_monte_carlo(
asset_table,
start_date=ANALYSIS_START_DATE,
end_date=ANALYSIS_END_DATE,
risk_free_rate=RISK_FREE_RATE,
num_portfolios=NUMBER_OF_WEIGHTS,
market_benchmark=BENCHMARK_INDEX,
set_ticks=False,
x_pos_table=1.15, # Position for the weight table on the plot
y_pos_table=0.52, # Position for the weight table on the plot
title=f'Efficient Frontier - Monte Carlo Simulation {ANALYSIS_START_DATE} to {ANALYSIS_END_DATE}'
)
RiskOptima.run_portfolio_optimization_mv_ml(
asset_table=asset_table,
training_start_date='2022-01-01',
training_end_date='2023-11-27',
model_type='Linear Regression',
risk_free_rate=RISK_FREE_RATE,
num_portfolios=100000,
market_benchmark=[BENCHMARK_INDEX],
max_volatility=0.25,
min_weight=0.03,
max_weight=0.2
)
RiskOptima.run_portfolio_probability_analysis(
asset_table=asset_table,
analysis_start_date=ANALYSIS_START_DATE,
analysis_end_date=ANALYSIS_END_DATE,
benchmark_index=BENCHMARK_INDEX,
risk_free_rate=RISK_FREE_RATE,
number_of_portfolio_weights=NUMBER_OF_WEIGHTS,
trading_days_per_year=RiskOptima.get_trading_days(),
number_of_monte_carlo_runs=NUMBER_OF_MC_RUNS
)
from riskoptima import RiskOptima
cf = RiskOptima.bond_cash_flows_v2(4, 1000, 0.06, 2) # 2 years, semi-annual, hence 4 periods
md_2 = RiskOptima.macaulay_duration_v3(cf, 0.05, 2)
md_2
For complete documentation and usage examples, visit the GitHub repository:
We welcome contributions! If you'd like to improve the package or report issues, please visit the GitHub repository.
RiskOptima is licensed under the MIT License.