Skip to content

The RiskOptima toolkit is a comprehensive Python solution designed to assist investors in evaluating, managing, and optimizing the risk of their investment portfolios. This package implements advanced financial metrics and models to compute key risk indicators, including Value at Risk (VaR), Conditional Value at Risk (CVaR), and volatility assessme

License

Notifications You must be signed in to change notification settings

JordiCorbilla/RiskOptima

Repository files navigation

RiskOptima

image

RiskOptima is a comprehensive Python toolkit for evaluating, managing, and optimizing investment portfolios. This package is designed to empower investors and data scientists by combining financial risk analysis, backtesting, mean-variance optimization, and machine learning capabilities into a single, cohesive package.

Stats

https://pypistats.org/packages/riskoptima

Key Features

  • Portfolio Optimization: Includes mean-variance optimization, efficient frontier calculation, and maximum Sharpe ratio portfolio construction.
  • Risk Management: Compute key financial risk metrics such as Value at Risk (VaR), Conditional Value at Risk (CVaR), volatility, and drawdowns.
  • Backtesting Framework: Simulate historical performance of investment strategies and analyze portfolio dynamics over time.
  • Machine Learning Integration: Future-ready for implementing machine learning models for predictive analytics and advanced portfolio insights.
  • Monte Carlo Simulations: Perform extensive simulations to analyze potential portfolio outcomes. See example here https://github.com/JordiCorbilla/efficient-frontier-monte-carlo-portfolio-optimization
  • Comprehensive Financial Metrics: Calculate returns, Sharpe ratios, covariance matrices, and more.

Installation

See the project here: https://pypi.org/project/riskoptima/

pip install riskoptima

Usage

Example 1: Setting up your portfolio

Create your portfolio table similar to the below:

Asset Weight Label MarketCap
MO 0.04 Altria Group Inc. 110.0e9
NWN 0.14 Northwest Natural Gas 1.8e9
BKH 0.01 Black Hills Corp. 4.5e9
ED 0.01 Con Edison 30.0e9
PEP 0.09 PepsiCo Inc. 255.0e9
NFG 0.16 National Fuel Gas 5.6e9
KO 0.06 Coca-Cola Company 275.0e9
FRT 0.28 Federal Realty Inv. Trust 9.8e9
GPC 0.16 Genuine Parts Co. 25.3e9
MSEX 0.05 Middlesex Water Co. 2.4e9
import pandas as pd
from riskoptima import RiskOptima

import warnings
warnings.filterwarnings(
    "ignore", 
    category=FutureWarning, 
    message=".*DataFrame.std with axis=None is deprecated.*"
)

# Define your current porfolio with your weights and company names
asset_data = [
    {"Asset": "MO",    "Weight": 0.04, "Label": "Altria Group Inc.",       "MarketCap": 110.0e9},
    {"Asset": "NWN",   "Weight": 0.14, "Label": "Northwest Natural Gas",   "MarketCap": 1.8e9},
    {"Asset": "BKH",   "Weight": 0.01, "Label": "Black Hills Corp.",         "MarketCap": 4.5e9},
    {"Asset": "ED",    "Weight": 0.01, "Label": "Con Edison",                "MarketCap": 30.0e9},
    {"Asset": "PEP",   "Weight": 0.09, "Label": "PepsiCo Inc.",              "MarketCap": 255.0e9},
    {"Asset": "NFG",   "Weight": 0.16, "Label": "National Fuel Gas",         "MarketCap": 5.6e9},
    {"Asset": "KO",    "Weight": 0.06, "Label": "Coca-Cola Company",         "MarketCap": 275.0e9},
    {"Asset": "FRT",   "Weight": 0.28, "Label": "Federal Realty Inv. Trust", "MarketCap": 9.8e9},
    {"Asset": "GPC",   "Weight": 0.16, "Label": "Genuine Parts Co.",         "MarketCap": 25.3e9},
    {"Asset": "MSEX",  "Weight": 0.05, "Label": "Middlesex Water Co.",       "MarketCap": 2.4e9}
]
asset_table = pd.DataFrame(asset_data)

capital = 100_000

asset_table['Portfolio'] = asset_table['Weight'] * capital

ANALYSIS_START_DATE = RiskOptima.get_previous_year_date(RiskOptima.get_previous_working_day(), 1)
ANALYSIS_END_DATE   = RiskOptima.get_previous_working_day()
BENCHMARK_INDEX     = 'SPY'
RISK_FREE_RATE      = 0.05
NUMBER_OF_WEIGHTS   = 10_000
NUMBER_OF_MC_RUNS   = 1_000

Example 1: Creating a Portfolio Area Chart

If you want to know visually how's your portfolio doing right now

RiskOptima.create_portfolio_area_chart(
    asset_table,
    end_date=ANALYSIS_END_DATE,
    lookback_days=2,
    title="Portfolio Area Chart"
)

portfolio_area_chart_20250212_095626

Example 2: Efficient Frontier - Monte Carlo Portfolio Optimization

RiskOptima.plot_efficient_frontier_monte_carlo(
    asset_table,
    start_date=ANALYSIS_START_DATE,
    end_date=ANALYSIS_END_DATE,
    risk_free_rate=RISK_FREE_RATE,
    num_portfolios=NUMBER_OF_WEIGHTS,
    market_benchmark=BENCHMARK_INDEX,
    set_ticks=False,
    x_pos_table=1.15,    # Position for the weight table on the plot
    y_pos_table=0.52,    # Position for the weight table on the plot
    title=f'Efficient Frontier - Monte Carlo Simulation {ANALYSIS_START_DATE} to {ANALYSIS_END_DATE}'
)

efficient_frontier_monter_carlo_20250203_205339

Example 3: Portfolio Optimization using Mean Variance and Machine Learning

RiskOptima.run_portfolio_optimization_mv_ml(
    asset_table=asset_table,
    training_start_date='2022-01-01',
    training_end_date='2023-11-27',
    model_type='Linear Regression',    
    risk_free_rate=RISK_FREE_RATE,
    num_portfolios=100000,
    market_benchmark=[BENCHMARK_INDEX],
    max_volatility=0.25,
    min_weight=0.03,
    max_weight=0.2
)

machine_learning_optimization_20250203_210953

Example 4: Portfolio Optimization using Probability Analysis

RiskOptima.run_portfolio_probability_analysis(
    asset_table=asset_table,
    analysis_start_date=ANALYSIS_START_DATE,
    analysis_end_date=ANALYSIS_END_DATE,
    benchmark_index=BENCHMARK_INDEX,
    risk_free_rate=RISK_FREE_RATE,
    number_of_portfolio_weights=NUMBER_OF_WEIGHTS,
    trading_days_per_year=RiskOptima.get_trading_days(),
    number_of_monte_carlo_runs=NUMBER_OF_MC_RUNS
)

probability_distributions_of_final_fund_returns20250205_212501

Example 54: Macaulay Duration

from riskoptima import RiskOptima
cf = RiskOptima.bond_cash_flows_v2(4, 1000, 0.06, 2)  # 2 years, semi-annual, hence 4 periods
md_2 = RiskOptima.macaulay_duration_v3(cf, 0.05, 2)
md_2

image

Documentation

For complete documentation and usage examples, visit the GitHub repository:

RiskOptima GitHub

Contributing

We welcome contributions! If you'd like to improve the package or report issues, please visit the GitHub repository.

License

RiskOptima is licensed under the MIT License.

Support me

Buy Me A Coffee

About

The RiskOptima toolkit is a comprehensive Python solution designed to assist investors in evaluating, managing, and optimizing the risk of their investment portfolios. This package implements advanced financial metrics and models to compute key risk indicators, including Value at Risk (VaR), Conditional Value at Risk (CVaR), and volatility assessme

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published