Skip to content

Commit

Permalink
pre-training bert
Browse files Browse the repository at this point in the history
  • Loading branch information
Kim-kwan-woo committed Oct 5, 2021
1 parent 1d31c6f commit f2a9039
Show file tree
Hide file tree
Showing 4 changed files with 15,758 additions and 0 deletions.
232 changes: 232 additions & 0 deletions bert_train.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,232 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Importing Libraries and Data"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import tensorflow as tf\n",
"from tensorflow.keras.layers import Dense, Input\n",
"from tensorflow.keras.optimizers import Adam\n",
"from tensorflow.keras.models import Model\n",
"from tensorflow.keras.callbacks import ModelCheckpoint\n",
"import tensorflow_hub as hub\n",
"\n",
"import re\n",
"from bert import tokenization\n",
"import string\n",
"tf.gfile = tf.io.gfile"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"train = pd.read_csv(\"./data/train.csv\")\n",
"test = pd.read_csv(\"./data/test.csv\")\n",
"submission = pd.read_csv(\"./data/sample_submission.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Helper functions"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def bert_encode(texts, tokenizer, max_len=512):\n",
" all_tokens = []\n",
" all_masks = []\n",
" all_segments = []\n",
" \n",
" for text in texts:\n",
" text = tokenizer.tokenize(text)\n",
" \n",
" text = text[:max_len-2]\n",
" input_sequence = [\"[CLS]\"] + text + [\"[SEP]\"]\n",
" pad_len = max_len - len(input_sequence)\n",
" \n",
" tokens = tokenizer.convert_tokens_to_ids(input_sequence)\n",
" tokens += [0] * pad_len\n",
" pad_masks = [1] * len(input_sequence) + [0] * pad_len\n",
" segment_ids = [0] * max_len\n",
" \n",
" all_tokens.append(tokens)\n",
" all_masks.append(pad_masks)\n",
" all_segments.append(segment_ids)\n",
" \n",
" return np.array(all_tokens), np.array(all_masks), np.array(all_segments)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def build_model(bert_layer, max_len=512):\n",
" input_word_ids = Input(shape=(max_len,), dtype=tf.int32, name=\"input_word_ids\")\n",
" input_mask = Input(shape=(max_len,), dtype=tf.int32, name=\"input_mask\")\n",
" segment_ids = Input(shape=(max_len,), dtype=tf.int32, name=\"segment_ids\")\n",
"\n",
" _, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids])\n",
" clf_output = sequence_output[:, 0, :]\n",
" out = Dense(1, activation='sigmoid')(clf_output)\n",
" \n",
" model = Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=out)\n",
" model.compile(Adam(lr=1e-5), loss='binary_crossentropy', metrics=['accuracy'])\n",
" \n",
" return model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data cleaning"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def lowercase_text(text):\n",
" return text.lower()\n",
"\n",
"train.text=train.text.apply(lambda x: lowercase_text(x))\n",
"test.text=test.text.apply(lambda x: lowercase_text(x))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def remove_noise(text):\n",
" text = re.sub('\\[.*?\\]', '', text)\n",
" text = re.sub('https?://\\S+|www\\.\\S+', '', text)\n",
" text = re.sub('<.*?>+', '', text)\n",
" text = re.sub('[%s]' % re.escape(string.punctuation), '', text)\n",
" text = re.sub('\\n', '', text)\n",
" text = re.sub('\\w*\\d\\w*', '', text)\n",
" return text\n",
"\n",
"train.text=train.text.apply(lambda x: remove_noise(x))\n",
"test.text=test.text.apply(lambda x: remove_noise(x))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 our deeds are the reason of this earthquake ma...\n",
"1 forest fire near la ronge sask canada\n",
"2 all residents asked to shelter in place are be...\n",
"3 people receive wildfires evacuation orders in...\n",
"4 just got sent this photo from ruby alaska as s...\n",
"Name: text, dtype: object"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train.text.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Pre-Training (BERT)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"module_url = \"https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1\"\n",
"bert_layer = hub.KerasLayer(module_url, trainable=True)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy()\n",
"do_lower_case = bert_layer.resolved_object.do_lower_case.numpy()\n",
"tokenizer = tokenization.FullTokenizer(vocab_file, do_lower_case)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"train_input = bert_encode(train.text.values, tokenizer, max_len=160)\n",
"test_input = bert_encode(test.text.values, tokenizer, max_len=160)\n",
"train_labels = train.target.values"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading

0 comments on commit f2a9039

Please sign in to comment.