I’m Konstantin Nikiforov — MD, Molecular Geneticist (Russia) transitioning into Data Science & Machine Learning.
I like end-to-end work: data → features → models → APIs → simple UIs → orchestration.
Focus: applied ML for business (analytics & decision support), reproducible pipelines, model calibration & evaluation.
Interests: neural networks & AI, biomedical ML, causal inference, interpretable models, NLP/linguistics, music.
Core: Python · SQL · Pandas · NumPy · scikit-learn · CatBoost · XGBoost · LightGBM · Optuna
DL/NLP: PyTorch · Hugging Face · Sentence-BERT · (SimCLR/BYOL, Diffusion — exploring)
Recsys: ALS (implicit) · Hybrid SBERT+ALS+CatBoost · Qdrant (vector DB)
Time Series: Prophet · TBATS · ETNA/AutoTS · backtesting (rolling/holdout)
MLOps/App: FastAPI · Streamlit · Airflow · Docker/Compose · MLflow
Data & Scale: Spark (PySpark) · PostgreSQL · MySQL
XAI/Visualization: SHAP · LIME · Plotly/Dash · Matplotlib · ydata-profiling
Domains: Tabular ML · Recommenders · NLP · Time Series · BioML · CV
Exploring: Ray/Dask · GNNs · SSL
- Hybrid Book Recommender System — CatBoost + ALS + SBERT · FastAPI + Streamlit · Docker · Qdrant
repo - BlendCAL — Conversion Prediction — CatBoost/XGBoost/LightGBM ensemble · FastAPI · Streamlit · Airflow DAGs · Docker Compose
repo - Model Drift Monitoring — Evidently + SHAP + PSI/JS checks · alert policy demo
repo - Panel Time-Series Forecasting — ARIMA, TBATS, Prophet, Darts · Optuna-tuned baselines
repo - Omics Survival Analysis — RNA-seq PCA + embeddings for bioinformatics
repo
English (B2) · French (B2)
Email: [email protected] · Telegram: @Konnik1988 · GitHub: https://github.com/KonNik88
MD molecular geneticist building practical DS/ML pipelines (Python, FastAPI, Streamlit, Airflow, Docker).