Skip to content
/ qso Public

Q⊗DASH is a comprehensive quantum computing framework built around the Metatron Quantum State Operator (QSO) — a 13-dimensional quantum system based on sacred geometry. The platform combines a high-performance Rust core with intelligent calibration layers and integration bridges for enterprise deployment.

License

Notifications You must be signed in to change notification settings

LashSesh/qso

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

91 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Q⊗DASH - Metatron Quantum State Operator Framework

Rust License Workspace

Enterprise-grade Quantum Computing Framework with 13-dimensional Metatron Geometry

Q⊗DASH (MetatronQSO - Quantum State Operator) is a state-of-the-art quantum computing framework in pure Rust, based on the Sacred Geometry of Metatron's Cube. The system implements a complete stack of quantum algorithms, variational methods, dynamic tripolar logic, and automatic calibration through the Seraphic Calibration Shell.

🌟 Highlights

  • 13-dimensional Metatron Cube - Complete geometric quantum structure with 78 edges
  • Variational Quantum Algorithms - VQE, QAOA, VQC with 3 ansatz types
  • Dynamic Tripolar Logic (DTL) - 58.5% information advantage over binary systems
  • Seraphic Calibration Shell (SCS) - Automatic hyperparameter optimization
  • DioniceOS Integration - 4D-funnel system for 4D-5D coupling
  • Python SDK - High-performance bindings via PyO3
  • Backend Abstraction - Unified interface for Local/IBM/Cloud backends
  • Telemetry & Dashboard - Real-time monitoring with REST API
  • 24 Rust Crates - Modular workspace architecture

📦 Workspace Overview

The project is organized as a Cargo workspace with 24 crates:

Main Components (6 Crates)

Crate Description Type
metatron-qso-rs Core Quantum Computing Library lib + 8 bins
metatron_qso_py Python SDK (PyO3 Bindings) cdylib
metatron_backend Backend Abstraction (Local/IBM) lib
metatron_dionice_bridge DioniceOS 4D-5D Integration lib
metatron_triton TRITON Spiral Search Optimizer lib
metatron_telemetry HTTP Telemetry Server bin

DioniceOS Integration (18 Crates)

  • apollyon_5d/ (3 Crates) - 5D dynamic system framework

    • core - Dynamics, coupling, ensemble, stability
    • bridge - Integration layer
    • metatron - Geometric cognition engine
  • infinity-ledger/ (13 Crates) - MEF Pipeline System

    • mef-core - Core MEF pipeline
    • mef-ledger - Hash-chained ledger
    • mef-memory - Vector memory with adaptive routing
    • mef-router - S7 routing system
    • mef-spiral, mef-storage, mef-hdag, mef-topology, mef-coupling, mef-schemas
    • mef-solvecoagula - Double-kick operators
    • Additional: acquisition, domains, knowledge, api, audit, cli, benchmarks, tic, vector-db
  • apollyon-mef-bridge/ - APOLLYON-5D ⟷ Infinity-Ledger Bridge

    • 4D-funnel system (8 modules)
    • 4 bidirectional adapters
    • Unified cognitive engine
  • overlay/ - Unified 5D Cube Overlay

🚀 Quick Start

Prerequisites

For Windows users: Before building, you need to install additional tools:

  • CMake (required for cryptographic dependencies)
  • NASM (recommended for performance)
  • Visual Studio Build Tools 2022 with C++ workload

📖 See docs/WINDOWS_SETUP.md for detailed Windows installation instructions

For Linux/macOS users:

  • Rust 1.85.0+
  • Standard build tools (gcc/clang)
  • CMake (usually available via package manager: apt install cmake / brew install cmake)

Installation

# Clone repository
git clone https://github.com/LashSesh/qso.git
cd qso

# Build core library
cargo build --release -p metatron-qso-rs

# Run all tests
cargo test --workspace

# Run benchmarks
cargo run --release --bin quantum_walk_bench

First Quantum Program

use metatron_qso_rs::prelude::*;

fn main() -> Result<()> {
    // Initialize Metatron QSO
    let qso = QSO::new(QSOParameters::default())?;

    // Quantum walk from center node
    let initial = QuantumState::basis_state(0); // Node 0 = center
    let evolved = qso.evolve_state(&initial, 1.0)?;

    // Probability distribution
    for (node, prob) in evolved.probabilities().iter().enumerate() {
        println!("Node {}: {:.4}", node, prob);
    }

    Ok(())
}

Python SDK Usage

# Install Python SDK
cd metatron_qso_py
pip install maturin
maturin develop --release
import metatron_qso

# Create Metatron graph
graph = metatron_qso.MetatronGraph()

# Run quantum walk
result = metatron_qso.run_quantum_walk(
    graph=graph,
    source_nodes=[0],
    t_max=5.0,
    dt=0.1
)

# QAOA for MaxCut
qaoa_result = metatron_qso.solve_maxcut_qaoa(
    graph=graph,
    depth=3,
    max_iters=100
)

# VQE ground state
vqe_result = metatron_qso.run_vqe(
    graph=graph,
    depth=2,
    ansatz_type="hardware_efficient"
)

🧬 Core Features - metatron-qso-rs

Metatron Geometry

13-dimensional Cube based on Sacred Geometry:

  • 1 center node (Node 0)
  • 6 hexagon nodes (Nodes 1-6)
  • 6 cube nodes (Nodes 7-12)
  • 78 edges with complete connectivity
  • Embedding of all 5 Platonic solids
  • Symmetry group G_M for error-resistant operations

Graph Properties:

  • Average degree: 12
  • Algebraic connectivity: λ₁ > 0 (high)
  • Code distance: d ≥ 6 (topological error correction)

Quantum Algorithms

Variational Quantum Algorithms (VQA)

VQE (Variational Quantum Eigensolver):

use metatron_qso_rs::vqa::{VQE, AnsatzType};

let vqe = VQE::builder()
    .hamiltonian(qso.hamiltonian().clone())
    .ansatz_type(AnsatzType::HardwareEfficient)
    .depth(2)
    .optimizer_name("ADAM")
    .max_iterations(1000)
    .build()?;

let result = vqe.run()?;
println!("Ground Energy: {:.10}", result.ground_energy);

3 Ansatz Types:

  • HardwareEfficient - Optimized for hardware implementation
  • EfficientSU2 - SU(2)-based
  • MetatronAnsatz - Specialized for Metatron geometry

QAOA (Quantum Approximate Optimization Algorithm):

use metatron_qso_rs::vqa::{QAOA, MaxCutProblem};

let graph = MetatronGraph::new();
let problem = MaxCutProblem::from_graph(&graph);
let qaoa = QAOA::new(problem.hamiltonian(), 3);
let result = qaoa.run()?;

println!("Approximation ratio: {:.4}", result.approximation_ratio);

VQC (Variational Quantum Classifier):

  • Binary and multi-class classification
  • Parameter shift rule for gradients
  • Training/test split support

Optimizers: COBYLA, ADAM, L-BFGS-B

Quantum Walks

4 Implementations:

  • CTQW (Continuous-Time Quantum Walk) - Spectral propagator method
  • Krylov Methods - Lanczos algorithm for large systems
  • Scattering Analysis - Density of states, scattering channels
  • Benchmark Suite - Hitting time, mixing time, fidelity
use metatron_qso_rs::quantum_walk::*;

let walk = ContinuousQuantumWalk::new(graph.adjacency_matrix());
let result = walk.evolve(initial_state, time)?;

Advanced Algorithms

  • Grover Search - Metatron-specific variant
  • Boson Sampling - Platonic-solid interference
  • Quantum Machine Learning - Graph-structured ML

Dynamic Tripolar Logic (DTL)

58.5% information advantage over binary systems:

3 States:

  • L+ (active) - High activation
  • L- (inactive) - Low activation
  • Ld (dynamic/undetermined) - Superposition

Features:

  • Kuramoto synchronization networks
  • Resonator dynamics
  • Tripolar gate operations
  • Network coupling

Information Capacity (13 nodes):

  • Binary: 13.0 bit
  • Tripolar: 20.6 bit (+58.5%)
  • With phase: 46.6 bit (+258%)

Symmetry & Error Correction

  • G_M Symmetry Group - Metatron-specific symmetries
  • Topological Codes - Code distance d ≥ 6
  • Error-resistant Operations - Symmetry-protected gates

🐍 Python SDK - metatron_qso_py

High-Performance Python Bindings via PyO3

Installation

cd metatron_qso_py
pip install maturin
maturin develop --release

Features

  • Python-idiomatic API - dict returns, list parameters
  • Rust performance - Zero-cost bindings
  • Jupyter-ready - Interactive notebooks
  • Type safety - Clear error handling

Examples

# Run examples
python metatron_qso_py/examples/01_quantum_walk_basic.py
python metatron_qso_py/examples/02_qaoa_maxcut_basic.py
python metatron_qso_py/examples/03_vqe_ground_state.py

# Jupyter notebook
jupyter notebook metatron_qso_py/notebooks/QuantumWalk_Intro.ipynb

Auto-Tuning Integration

import metatron_qso

# QAOA with automatic calibration
result, proposal = metatron_qso.solve_maxcut_qaoa_with_tuning(
    graph=graph,
    depth=3,
    max_iters=100,
    auto_calibrate=True
)

if proposal.por_accepted:
    print(f"SCS suggests: depth={proposal.config.ansatz_depth}")

🔧 Seraphic Calibration Shell (SCS)

Automatic Hyperparameter Optimization for Quantum Algorithms

The SCS is a meta-algorithm for automatic calibration of quantum algorithms. It uses field-theoretic feedback and fixpoint dynamics.

Core Concepts

Performance Triplet Φ(c) = (ψ, ρ, ω):

  • ψ (Quality) - Algorithm-specific quality
  • ρ (Stability) - Robustness across multiple runs
  • ω (Efficiency) - Computational efficiency

Mandorla Field M(t):

  • 16-dimensional resonance field
  • Historical performance patterns
  • Guides configuration changes

Double-Kick Operator T = Φ_V ∘ Φ_U:

  • Update-Kick Φ_U: Improves quality
  • Stabilization-Kick Φ_V: Optimizes stability
  • Converges to fixpoint attractors

Proof-of-Resonance (PoR):

  • Acceptance criterion for new configurations
  • Guarantees monotonic quality improvement
  • Validates field resonance

CRI (Calibration Regime Initialization):

  • Detects stagnation in local optimum
  • Automatically switches to new regime
  • Enables global exploration

CLI Usage

# Initialize SCS
python -m scs.cli init

# Execute 5 calibration steps
python -m scs.cli step -n 5

# Show status
python -m scs.cli status

# Export best configuration
python -m scs.cli export -o best_config.json

Python API

from scs import AutoTuner

tuner = AutoTuner(benchmark_dir="benchmarks", enabled=True)
tuner.initialize()

for iteration in range(10):
    result = run_algorithm()
    metrics = {"psi": 0.85, "rho": 0.80, "omega": 0.72}

    tuner.ingest_benchmark("qaoa", config, metrics, result)
    proposal = tuner.propose_new_config()

    if proposal.por_accepted:
        config = proposal.config

🌐 DioniceOS Integration

4D-5D Coupling System for Cognitive Quantum Processing

Architecture

4D-Funnel (Gabriel) ←→ APOLLYON-5D ←→ Infinity-Ledger (MEF)
                               ↓
                     Metatron QSO (via Bridge)

4D-Funnel System

Components:

  • Funnel Graph - Directed graph with Hebbian learning
  • Hyperbion Layer - Morphodynamic 4D-5D coupling
  • HDAG Field - 5D resonance lattice (hyperdimensional acyclic)
  • Policies - Explore, exploit, homeostasis

Properties:

  • Deterministic: Same inputs → identical outputs
  • Proof-carrying: Cryptographic verification
  • Coordinate mapping: SCS metrics → 4D state space

5D Coordinate Space

Unified 5D Space (x, y, z, ψ, ω):

  • x, y, z - Spatial coordinates
  • ψ (psi) - Semantic weight / resonance
  • ω (omega) - Temporal phase / oscillation

Bidirectional Adapters

4 Adapters for seamless integration:

  • State Adapter - 5D ⟷ Spiral
  • Spectral Adapter - Features ⟷ Signature
  • Metatron Adapter - Cube-13 ⟷ S7
  • Resonance Adapter - Field ⟷ PoR

Integration Flow

  1. SCS State (ψ, ρ, ω, algorithm) → QDashCalibrationState
  2. Bridge Mapping → 4D state space
  3. 4D-Funnel Coupling Tick:
    • Lift 4D → 5D
    • Hyperbion absorption
    • HDAG relaxation & gradient
    • Project 5D → 4D
    • Funnel advection
  4. Calibration Suggestion generation

Test Coverage

  • APOLLYON-5D: 109 tests
  • Infinity-Ledger: Complete MEF tests
  • Bridge: 84 tests (41 for 4D-funnel)

🔌 Backend Abstraction - metatron_backend

Unified Interface for Multiple Quantum Backends

Supported Backends

  • Local Simulator (default) - Pure Rust simulation
  • IBM Quantum (feature-gated) - IBM Cloud integration
  • Extensible for AWS Braket, IonQ, Rigetti

Usage

use metatron_backend::*;

// Backend registry
let registry = BackendRegistry::new();

// Local backend
let local = registry.get_backend("local")?;

// Execute circuit
let circuit = Circuit::new(num_qubits);
circuit.add_gate(Gate::H(0));
circuit.add_gate(Gate::CNOT(0, 1));

let result = local.execute(&circuit)?;
println!("Measurements: {:?}", result.measurements);

Features

  • Provider Abstraction - Unified API for all backends
  • Circuit Representation - Backend-agnostic format
  • Registry Pattern - Factory for backend instances
  • Feature Gates - Optional IBM/Cloud integration

📊 Telemetry & Dashboard - metatron_telemetry

Real-time Monitoring with HTTP REST API

Features

  • REST API - Complete HTTP endpoints
  • Real-time Metrics - Live performance tracking
  • Historical Data - Persistent storage
  • Web Dashboard - Browser-based UI
  • Demo Mode - Sample data for testing

Starting the Server

cargo run --release --bin metatron_telemetry
🚀 Telemetry server running on http://localhost:3000

Endpoints:
  GET  /health              - Health check
  GET  /api/metrics         - Current metrics
  POST /api/metrics         - Add metric
  GET  /api/metrics/history - Historical data
  GET  /dashboard           - Web dashboard

API Usage

# Health check
curl http://localhost:3000/health

# Get metrics
curl http://localhost:3000/api/metrics

# Send metric
curl -X POST http://localhost:3000/api/metrics \
  -H "Content-Type: application/json" \
  -d '{"algorithm": "vqe", "energy": -12.9997, "iterations": 150}'

Web Dashboard

# Open dashboard in browser
open http://localhost:3000/dashboard

Features:

  • Live metric visualization
  • Algorithm performance charts
  • Historical trend analysis
  • Export to JSON/CSV

🔍 TRITON - Spiral Search Optimizer

Evolutionary Spiral-Search for SCS Calibration

Concept

TRITON uses golden-angle spirals for efficient hyperparameter exploration:

SpectralSignature (ψ, ρ, ω):

  • 3D quality metric
  • Momentum-based search
  • Adaptive step size

Usage

use metatron_triton::*;

let search = TritonSearch::new(config_space);
let signature = SpectralSignature::new(0.85, 0.80, 0.72);

let proposal = search.evolve(current_config, signature)?;

if proposal.quality_improved() {
    apply_config(proposal.config);
}

Features

  • Golden-angle spirals (φ = 137.5°)
  • Momentum-driven evolution
  • Calibration proposals
  • Integration with SCS

🧪 Testing & Benchmarking

Running Tests

# All unit tests in workspace
cargo test --workspace

# Test specific crate
cargo test -p metatron-qso-rs
cargo test -p metatron_dionice_bridge

# DioniceOS tests
cargo test -p apollyon_5d            # 109 tests
cargo test -p apollyon-mef-bridge    # 84 tests (41 for 4D-funnel)

Benchmark Suite

8 Benchmark Binaries:

# Core benchmarks
cargo run --release --bin quantum_walk_bench
cargo run --release --bin vqe_bench
cargo run --release --bin qaoa_bench
cargo run --release --bin vqc_bench

# Comparison benchmarks
cargo run --release --bin integration_bench
cargo run --release --bin cross_system_bench
cargo run --release --bin advanced_algorithms_bench
cargo run --release --bin benchmark_compare

Performance Baselines

Benchmark Performance Convergence
Quantum Walk 31,941 ops/sec 100%
VQE (HardwareEfficient) ~150 iters E₀ = -12.9997
QAOA (depth=3) ~100 iters ratio = 0.9974
VQC (binary) ~200 epochs acc = 50-90%

CI/CD Integration

GitHub Actions with automatic baseline comparison:

  • Parallel test execution
  • Performance regression detection
  • Baseline tracking in metatron-qso-rs/ci/
  • Daily performance metrics

📖 Documentation

Overview Documents (Root)

SCS Documentation (docs/)

System Documentation (docs/)

DioniceOS Documentation

Core Library Documentation (metatron-qso-rs/docs/)

Setup Guides (docs/)

API Documentation

# Generate and open rustdoc
cargo doc --open --workspace

🛠️ Development

Prerequisites

  • Rust 1.85.0+ (Edition 2021)
  • Cargo with workspace support
  • Python 3.8+ (for Python SDK)
  • Maturin (for Python bindings)

Building the Project

# Build entire workspace
cargo build --release --workspace

# Build individual crate
cargo build --release -p metatron-qso-rs
cargo build --release -p metatron_backend
cargo build --release -p metatron_telemetry

# Build Python SDK
cd metatron_qso_py
maturin develop --release

Code Quality

# Formatting
cargo fmt --all

# Linting
cargo clippy --workspace -- -D warnings

# Python linting
cd scs
ruff check .
ruff format .

Features

metatron-qso-rs Features:

  • walks - Quantum walk algorithms
  • vqa - Variational quantum algorithms
  • dtl - Dynamic tripolar logic
  • codes - Symmetry codes
  • advanced - Advanced algorithms

metatron_backend Features:

  • local (default) - Local simulator
  • ibm - IBM Quantum integration
  • all-backends - All backends
# Build with specific features
cargo build --release -p metatron-qso-rs --features "walks,vqa,dtl"
cargo build --release -p metatron_backend --features "ibm"

📊 Architecture Diagram

┌─────────────────────────────────────────────────────────────────────┐
│                           Q⊗DASH Workspace                          │
├─────────────────────────────────────────────────────────────────────┤
│                                                                     │
│  ┌──────────────────┐      ┌──────────────────┐                   │
│  │ metatron-qso-rs  │◄────►│ metatron_backend │                   │
│  │  • Quantum Core  │      │  • Local/IBM     │                   │
│  │  • VQA/QAOA/VQC  │      │  • Circuit API   │                   │
│  │  • Quantum Walks │      └──────────────────┘                   │
│  │  • DTL System    │                                             │
│  └────────┬─────────┘                                             │
│           │                                                        │
│           ▼                                                        │
│  ┌──────────────────┐      ┌──────────────────────────┐          │
│  │ metatron_qso_py  │      │ metatron_dionice_bridge  │          │
│  │  • PyO3 Bindings │      │  • 4D-Trichter System    │          │
│  │  • Python API    │◄────►│  • 4D-5D Coupling        │          │
│  │  • Auto-Tuning   │      │  • 4 Adapters            │          │
│  └──────────────────┘      └───────────┬──────────────┘          │
│                                        │                          │
│  ┌──────────────────┐                 ▼                          │
│  │ metatron_triton  │      ┌──────────────────────────┐          │
│  │  • Spiral Search │      │   DioniceOS (18 Crates)  │          │
│  │  • TRITON        │      ├──────────────────────────┤          │
│  └──────────────────┘      │ • apollyon_5d (3)        │          │
│                            │ • infinity-ledger (13)   │          │
│  ┌──────────────────┐      │ • apollyon-mef-bridge    │          │
│  │ metatron_telemetry│      │ • unified_5d_cube        │          │
│  │  • HTTP Server   │      └──────────────────────────┘          │
│  │  • REST API      │                                             │
│  │  • Dashboard     │                                             │
│  └──────────────────┘                                             │
│                                                                     │
│  ┌──────────────────────────────────────────┐                     │
│  │         SCS (Python 12 Modules)          │                     │
│  │  • Calibrator • Field • Operators • PoR  │                     │
│  │  • CRI • CLI • AutoTuner • Benchmark     │                     │
│  └──────────────────────────────────────────┘                     │
└─────────────────────────────────────────────────────────────────────┘

🔬 Scientific Background

Information-theoretic Advantage

Metatron System (13 nodes):

Binary:             13.0 bit (classical)
Tripolar:           20.6 bit (+58.5%)
Tripolar with phase: 46.6 bit (+258%)

Quantum Algorithm Complexity

Algorithm Complexity Speedup vs. Classical
Quantum Walk Search O(√N) ~3.6×
VQE Ground State O(poly(n)) Exponential
QAOA MaxCut O(p·M) >0.75 approximation
Boson Sampling #P-hard Classically intractable
Grover Search O(√N) Quadratic

4D-5D Coupling Theory

5D State Space: (x, y, z, ψ, ω)

  • Semantic dimension: ψ (resonance/weight)
  • Temporal dimension: ω (phase/oscillation)

Coupling Operator:

Lift:    4D → 5D  (Hyperbion absorption)
Relax:   5D → 5D  (HDAG gradient descent)
Project: 5D → 4D  (Funnel advection)

🤝 Contributing

Contributions are welcome! Please note:

  1. Fork the repository
  2. Create feature branch (git checkout -b feature/amazing-feature)
  3. Add tests (cargo test --workspace)
  4. Check formatting (cargo fmt --all && cargo clippy --workspace)
  5. Commit (git commit -m 'Add amazing feature')
  6. Push to branch (git push origin feature/amazing-feature)
  7. Open pull request

Development Guidelines

  • All new features need tests
  • Documentation with rustdoc
  • Update benchmark baselines when performance changes
  • Add Python examples for new APIs

📝 License

This project is licensed under the MIT License. See LICENSE for details.

🙏 Acknowledgments

  • Sacred Geometry - Metatron's Cube as fundamental structure
  • Quantum Computing - VQE/QAOA/VQC research
  • Rust Community - nalgebra, petgraph, rayon, pyo3
  • DioniceOS - 4D-5D integration framework

📧 Contact & Support

📈 Status & Metrics

  • Lines of Code: ~8,222 Rust (Core) + ~17,200 Rust (Python bindings) + ~3,204 Python (SCS)
  • Test Coverage: 109 tests (APOLLYON-5D) + 84 tests (Bridge) + inline tests
  • Workspace Crates: 24 (6 main + 18 DioniceOS)
  • Benchmark Suites: 8 executables with CI/CD integration
  • Documentation Files: 30+ Markdown files

Made with ❤️ in Rust | Powered by Quantum Geometry | © 2025 Sebastian Klemm (Aion-Chronos; "Sol invictus Mithra")

About

Q⊗DASH is a comprehensive quantum computing framework built around the Metatron Quantum State Operator (QSO) — a 13-dimensional quantum system based on sacred geometry. The platform combines a high-performance Rust core with intelligent calibration layers and integration bridges for enterprise deployment.

Topics

Resources

License

Stars

Watchers

Forks

Sponsor this project

Packages

No packages published

Contributors 2

  •  
  •