Enterprise-grade Quantum Computing Framework with 13-dimensional Metatron Geometry
Q⊗DASH (MetatronQSO - Quantum State Operator) is a state-of-the-art quantum computing framework in pure Rust, based on the Sacred Geometry of Metatron's Cube. The system implements a complete stack of quantum algorithms, variational methods, dynamic tripolar logic, and automatic calibration through the Seraphic Calibration Shell.
- 13-dimensional Metatron Cube - Complete geometric quantum structure with 78 edges
- Variational Quantum Algorithms - VQE, QAOA, VQC with 3 ansatz types
- Dynamic Tripolar Logic (DTL) - 58.5% information advantage over binary systems
- Seraphic Calibration Shell (SCS) - Automatic hyperparameter optimization
- DioniceOS Integration - 4D-funnel system for 4D-5D coupling
- Python SDK - High-performance bindings via PyO3
- Backend Abstraction - Unified interface for Local/IBM/Cloud backends
- Telemetry & Dashboard - Real-time monitoring with REST API
- 24 Rust Crates - Modular workspace architecture
The project is organized as a Cargo workspace with 24 crates:
| Crate | Description | Type |
|---|---|---|
| metatron-qso-rs | Core Quantum Computing Library | lib + 8 bins |
| metatron_qso_py | Python SDK (PyO3 Bindings) | cdylib |
| metatron_backend | Backend Abstraction (Local/IBM) | lib |
| metatron_dionice_bridge | DioniceOS 4D-5D Integration | lib |
| metatron_triton | TRITON Spiral Search Optimizer | lib |
| metatron_telemetry | HTTP Telemetry Server | bin |
-
apollyon_5d/ (3 Crates) - 5D dynamic system framework
core- Dynamics, coupling, ensemble, stabilitybridge- Integration layermetatron- Geometric cognition engine
-
infinity-ledger/ (13 Crates) - MEF Pipeline System
mef-core- Core MEF pipelinemef-ledger- Hash-chained ledgermef-memory- Vector memory with adaptive routingmef-router- S7 routing systemmef-spiral,mef-storage,mef-hdag,mef-topology,mef-coupling,mef-schemasmef-solvecoagula- Double-kick operators- Additional: acquisition, domains, knowledge, api, audit, cli, benchmarks, tic, vector-db
-
apollyon-mef-bridge/ - APOLLYON-5D ⟷ Infinity-Ledger Bridge
- 4D-funnel system (8 modules)
- 4 bidirectional adapters
- Unified cognitive engine
-
overlay/ - Unified 5D Cube Overlay
For Windows users: Before building, you need to install additional tools:
- CMake (required for cryptographic dependencies)
- NASM (recommended for performance)
- Visual Studio Build Tools 2022 with C++ workload
📖 See docs/WINDOWS_SETUP.md for detailed Windows installation instructions
For Linux/macOS users:
- Rust 1.85.0+
- Standard build tools (gcc/clang)
- CMake (usually available via package manager:
apt install cmake/brew install cmake)
# Clone repository
git clone https://github.com/LashSesh/qso.git
cd qso
# Build core library
cargo build --release -p metatron-qso-rs
# Run all tests
cargo test --workspace
# Run benchmarks
cargo run --release --bin quantum_walk_benchuse metatron_qso_rs::prelude::*;
fn main() -> Result<()> {
// Initialize Metatron QSO
let qso = QSO::new(QSOParameters::default())?;
// Quantum walk from center node
let initial = QuantumState::basis_state(0); // Node 0 = center
let evolved = qso.evolve_state(&initial, 1.0)?;
// Probability distribution
for (node, prob) in evolved.probabilities().iter().enumerate() {
println!("Node {}: {:.4}", node, prob);
}
Ok(())
}# Install Python SDK
cd metatron_qso_py
pip install maturin
maturin develop --releaseimport metatron_qso
# Create Metatron graph
graph = metatron_qso.MetatronGraph()
# Run quantum walk
result = metatron_qso.run_quantum_walk(
graph=graph,
source_nodes=[0],
t_max=5.0,
dt=0.1
)
# QAOA for MaxCut
qaoa_result = metatron_qso.solve_maxcut_qaoa(
graph=graph,
depth=3,
max_iters=100
)
# VQE ground state
vqe_result = metatron_qso.run_vqe(
graph=graph,
depth=2,
ansatz_type="hardware_efficient"
)13-dimensional Cube based on Sacred Geometry:
- 1 center node (Node 0)
- 6 hexagon nodes (Nodes 1-6)
- 6 cube nodes (Nodes 7-12)
- 78 edges with complete connectivity
- Embedding of all 5 Platonic solids
- Symmetry group G_M for error-resistant operations
Graph Properties:
- Average degree: 12
- Algebraic connectivity: λ₁ > 0 (high)
- Code distance: d ≥ 6 (topological error correction)
VQE (Variational Quantum Eigensolver):
use metatron_qso_rs::vqa::{VQE, AnsatzType};
let vqe = VQE::builder()
.hamiltonian(qso.hamiltonian().clone())
.ansatz_type(AnsatzType::HardwareEfficient)
.depth(2)
.optimizer_name("ADAM")
.max_iterations(1000)
.build()?;
let result = vqe.run()?;
println!("Ground Energy: {:.10}", result.ground_energy);3 Ansatz Types:
HardwareEfficient- Optimized for hardware implementationEfficientSU2- SU(2)-basedMetatronAnsatz- Specialized for Metatron geometry
QAOA (Quantum Approximate Optimization Algorithm):
use metatron_qso_rs::vqa::{QAOA, MaxCutProblem};
let graph = MetatronGraph::new();
let problem = MaxCutProblem::from_graph(&graph);
let qaoa = QAOA::new(problem.hamiltonian(), 3);
let result = qaoa.run()?;
println!("Approximation ratio: {:.4}", result.approximation_ratio);VQC (Variational Quantum Classifier):
- Binary and multi-class classification
- Parameter shift rule for gradients
- Training/test split support
Optimizers: COBYLA, ADAM, L-BFGS-B
4 Implementations:
- CTQW (Continuous-Time Quantum Walk) - Spectral propagator method
- Krylov Methods - Lanczos algorithm for large systems
- Scattering Analysis - Density of states, scattering channels
- Benchmark Suite - Hitting time, mixing time, fidelity
use metatron_qso_rs::quantum_walk::*;
let walk = ContinuousQuantumWalk::new(graph.adjacency_matrix());
let result = walk.evolve(initial_state, time)?;- Grover Search - Metatron-specific variant
- Boson Sampling - Platonic-solid interference
- Quantum Machine Learning - Graph-structured ML
58.5% information advantage over binary systems:
3 States:
- L+ (active) - High activation
- L- (inactive) - Low activation
- Ld (dynamic/undetermined) - Superposition
Features:
- Kuramoto synchronization networks
- Resonator dynamics
- Tripolar gate operations
- Network coupling
Information Capacity (13 nodes):
- Binary: 13.0 bit
- Tripolar: 20.6 bit (+58.5%)
- With phase: 46.6 bit (+258%)
- G_M Symmetry Group - Metatron-specific symmetries
- Topological Codes - Code distance d ≥ 6
- Error-resistant Operations - Symmetry-protected gates
High-Performance Python Bindings via PyO3
cd metatron_qso_py
pip install maturin
maturin develop --release- ✅ Python-idiomatic API - dict returns, list parameters
- ✅ Rust performance - Zero-cost bindings
- ✅ Jupyter-ready - Interactive notebooks
- ✅ Type safety - Clear error handling
# Run examples
python metatron_qso_py/examples/01_quantum_walk_basic.py
python metatron_qso_py/examples/02_qaoa_maxcut_basic.py
python metatron_qso_py/examples/03_vqe_ground_state.py
# Jupyter notebook
jupyter notebook metatron_qso_py/notebooks/QuantumWalk_Intro.ipynbimport metatron_qso
# QAOA with automatic calibration
result, proposal = metatron_qso.solve_maxcut_qaoa_with_tuning(
graph=graph,
depth=3,
max_iters=100,
auto_calibrate=True
)
if proposal.por_accepted:
print(f"SCS suggests: depth={proposal.config.ansatz_depth}")Automatic Hyperparameter Optimization for Quantum Algorithms
The SCS is a meta-algorithm for automatic calibration of quantum algorithms. It uses field-theoretic feedback and fixpoint dynamics.
Performance Triplet Φ(c) = (ψ, ρ, ω):
- ψ (Quality) - Algorithm-specific quality
- ρ (Stability) - Robustness across multiple runs
- ω (Efficiency) - Computational efficiency
Mandorla Field M(t):
- 16-dimensional resonance field
- Historical performance patterns
- Guides configuration changes
Double-Kick Operator T = Φ_V ∘ Φ_U:
- Update-Kick Φ_U: Improves quality
- Stabilization-Kick Φ_V: Optimizes stability
- Converges to fixpoint attractors
Proof-of-Resonance (PoR):
- Acceptance criterion for new configurations
- Guarantees monotonic quality improvement
- Validates field resonance
CRI (Calibration Regime Initialization):
- Detects stagnation in local optimum
- Automatically switches to new regime
- Enables global exploration
# Initialize SCS
python -m scs.cli init
# Execute 5 calibration steps
python -m scs.cli step -n 5
# Show status
python -m scs.cli status
# Export best configuration
python -m scs.cli export -o best_config.jsonfrom scs import AutoTuner
tuner = AutoTuner(benchmark_dir="benchmarks", enabled=True)
tuner.initialize()
for iteration in range(10):
result = run_algorithm()
metrics = {"psi": 0.85, "rho": 0.80, "omega": 0.72}
tuner.ingest_benchmark("qaoa", config, metrics, result)
proposal = tuner.propose_new_config()
if proposal.por_accepted:
config = proposal.config4D-5D Coupling System for Cognitive Quantum Processing
4D-Funnel (Gabriel) ←→ APOLLYON-5D ←→ Infinity-Ledger (MEF)
↓
Metatron QSO (via Bridge)
Components:
- Funnel Graph - Directed graph with Hebbian learning
- Hyperbion Layer - Morphodynamic 4D-5D coupling
- HDAG Field - 5D resonance lattice (hyperdimensional acyclic)
- Policies - Explore, exploit, homeostasis
Properties:
- Deterministic: Same inputs → identical outputs
- Proof-carrying: Cryptographic verification
- Coordinate mapping: SCS metrics → 4D state space
Unified 5D Space (x, y, z, ψ, ω):
- x, y, z - Spatial coordinates
- ψ (psi) - Semantic weight / resonance
- ω (omega) - Temporal phase / oscillation
4 Adapters for seamless integration:
- State Adapter - 5D ⟷ Spiral
- Spectral Adapter - Features ⟷ Signature
- Metatron Adapter - Cube-13 ⟷ S7
- Resonance Adapter - Field ⟷ PoR
- SCS State (ψ, ρ, ω, algorithm) → QDashCalibrationState
- Bridge Mapping → 4D state space
- 4D-Funnel Coupling Tick:
- Lift 4D → 5D
- Hyperbion absorption
- HDAG relaxation & gradient
- Project 5D → 4D
- Funnel advection
- Calibration Suggestion generation
- APOLLYON-5D: 109 tests
- Infinity-Ledger: Complete MEF tests
- Bridge: 84 tests (41 for 4D-funnel)
Unified Interface for Multiple Quantum Backends
- Local Simulator (default) - Pure Rust simulation
- IBM Quantum (feature-gated) - IBM Cloud integration
- Extensible for AWS Braket, IonQ, Rigetti
use metatron_backend::*;
// Backend registry
let registry = BackendRegistry::new();
// Local backend
let local = registry.get_backend("local")?;
// Execute circuit
let circuit = Circuit::new(num_qubits);
circuit.add_gate(Gate::H(0));
circuit.add_gate(Gate::CNOT(0, 1));
let result = local.execute(&circuit)?;
println!("Measurements: {:?}", result.measurements);- Provider Abstraction - Unified API for all backends
- Circuit Representation - Backend-agnostic format
- Registry Pattern - Factory for backend instances
- Feature Gates - Optional IBM/Cloud integration
Real-time Monitoring with HTTP REST API
- REST API - Complete HTTP endpoints
- Real-time Metrics - Live performance tracking
- Historical Data - Persistent storage
- Web Dashboard - Browser-based UI
- Demo Mode - Sample data for testing
cargo run --release --bin metatron_telemetry🚀 Telemetry server running on http://localhost:3000
Endpoints:
GET /health - Health check
GET /api/metrics - Current metrics
POST /api/metrics - Add metric
GET /api/metrics/history - Historical data
GET /dashboard - Web dashboard
# Health check
curl http://localhost:3000/health
# Get metrics
curl http://localhost:3000/api/metrics
# Send metric
curl -X POST http://localhost:3000/api/metrics \
-H "Content-Type: application/json" \
-d '{"algorithm": "vqe", "energy": -12.9997, "iterations": 150}'# Open dashboard in browser
open http://localhost:3000/dashboardFeatures:
- Live metric visualization
- Algorithm performance charts
- Historical trend analysis
- Export to JSON/CSV
Evolutionary Spiral-Search for SCS Calibration
TRITON uses golden-angle spirals for efficient hyperparameter exploration:
SpectralSignature (ψ, ρ, ω):
- 3D quality metric
- Momentum-based search
- Adaptive step size
use metatron_triton::*;
let search = TritonSearch::new(config_space);
let signature = SpectralSignature::new(0.85, 0.80, 0.72);
let proposal = search.evolve(current_config, signature)?;
if proposal.quality_improved() {
apply_config(proposal.config);
}- Golden-angle spirals (φ = 137.5°)
- Momentum-driven evolution
- Calibration proposals
- Integration with SCS
# All unit tests in workspace
cargo test --workspace
# Test specific crate
cargo test -p metatron-qso-rs
cargo test -p metatron_dionice_bridge
# DioniceOS tests
cargo test -p apollyon_5d # 109 tests
cargo test -p apollyon-mef-bridge # 84 tests (41 for 4D-funnel)8 Benchmark Binaries:
# Core benchmarks
cargo run --release --bin quantum_walk_bench
cargo run --release --bin vqe_bench
cargo run --release --bin qaoa_bench
cargo run --release --bin vqc_bench
# Comparison benchmarks
cargo run --release --bin integration_bench
cargo run --release --bin cross_system_bench
cargo run --release --bin advanced_algorithms_bench
cargo run --release --bin benchmark_compare| Benchmark | Performance | Convergence |
|---|---|---|
| Quantum Walk | 31,941 ops/sec | 100% |
| VQE (HardwareEfficient) | ~150 iters | E₀ = -12.9997 |
| QAOA (depth=3) | ~100 iters | ratio = 0.9974 |
| VQC (binary) | ~200 epochs | acc = 50-90% |
GitHub Actions with automatic baseline comparison:
- Parallel test execution
- Performance regression detection
- Baseline tracking in
metatron-qso-rs/ci/ - Daily performance metrics
- PRODUCT_OVERVIEW.md - Architecture overview
- DIONICEOS_INTEGRATION.md - DioniceOS integration guide
- VQA_IMPLEMENTATION_GUIDE.md - VQA algorithms guide
- QUANTENINFORMATIONSVERARBEITUNG_DOKUMENTATION.md - Quantum info (DE)
- BENCHMARK_SUITE_DOCUMENTATION.md - Benchmark system
- CHANGELOG.md - Version history
- RELEASE_PLAN.md - Packaging strategy
- DEV_SETUP.md - Development setup
- docs/SCS_CORE_DESIGN.md - Architecture & data flow
- docs/SCS_BENCHMARK_SCHEMA.md - JSON schema specification
- docs/SCS_USAGE_GUIDE.md - Workflows & best practices
- docs/seraphic_calibration_shell.md - Overview
- docs/backend_system.md - Backend architecture
- docs/telemetry_and_dashboard.md - Telemetry system
- docs/pyo3_integration.md - Python bindings
- docs/PYTHON_SDK_GUIDE.md - Python API reference
- docs/CI_PIPELINE_OVERVIEW.md - CI/CD pipeline
- docs/dioniceos/README.md - Complete DioniceOS guide
- docs/dioniceos/QUICK_START.md - Quick start
- metatron-qso-rs/docs/ARCHITECTURE.md - Core architecture
- metatron-qso-rs/docs/RUST_CORE_GUIDE.md - Developer guide
- quantum_walk_mixing.md, cross_system_vqe_scoring.md, vqe_tuning.md, vqc_overview.md
- docs/WINDOWS_SETUP.md - Windows 10/11 setup guide (EN) 🔥
- docs/SCHNELLANLEITUNG.md - Quick guide (DE)
# Generate and open rustdoc
cargo doc --open --workspace- Rust 1.85.0+ (Edition 2021)
- Cargo with workspace support
- Python 3.8+ (for Python SDK)
- Maturin (for Python bindings)
# Build entire workspace
cargo build --release --workspace
# Build individual crate
cargo build --release -p metatron-qso-rs
cargo build --release -p metatron_backend
cargo build --release -p metatron_telemetry
# Build Python SDK
cd metatron_qso_py
maturin develop --release# Formatting
cargo fmt --all
# Linting
cargo clippy --workspace -- -D warnings
# Python linting
cd scs
ruff check .
ruff format .metatron-qso-rs Features:
walks- Quantum walk algorithmsvqa- Variational quantum algorithmsdtl- Dynamic tripolar logiccodes- Symmetry codesadvanced- Advanced algorithms
metatron_backend Features:
local(default) - Local simulatoribm- IBM Quantum integrationall-backends- All backends
# Build with specific features
cargo build --release -p metatron-qso-rs --features "walks,vqa,dtl"
cargo build --release -p metatron_backend --features "ibm"┌─────────────────────────────────────────────────────────────────────┐
│ Q⊗DASH Workspace │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────┐ ┌──────────────────┐ │
│ │ metatron-qso-rs │◄────►│ metatron_backend │ │
│ │ • Quantum Core │ │ • Local/IBM │ │
│ │ • VQA/QAOA/VQC │ │ • Circuit API │ │
│ │ • Quantum Walks │ └──────────────────┘ │
│ │ • DTL System │ │
│ └────────┬─────────┘ │
│ │ │
│ ▼ │
│ ┌──────────────────┐ ┌──────────────────────────┐ │
│ │ metatron_qso_py │ │ metatron_dionice_bridge │ │
│ │ • PyO3 Bindings │ │ • 4D-Trichter System │ │
│ │ • Python API │◄────►│ • 4D-5D Coupling │ │
│ │ • Auto-Tuning │ │ • 4 Adapters │ │
│ └──────────────────┘ └───────────┬──────────────┘ │
│ │ │
│ ┌──────────────────┐ ▼ │
│ │ metatron_triton │ ┌──────────────────────────┐ │
│ │ • Spiral Search │ │ DioniceOS (18 Crates) │ │
│ │ • TRITON │ ├──────────────────────────┤ │
│ └──────────────────┘ │ • apollyon_5d (3) │ │
│ │ • infinity-ledger (13) │ │
│ ┌──────────────────┐ │ • apollyon-mef-bridge │ │
│ │ metatron_telemetry│ │ • unified_5d_cube │ │
│ │ • HTTP Server │ └──────────────────────────┘ │
│ │ • REST API │ │
│ │ • Dashboard │ │
│ └──────────────────┘ │
│ │
│ ┌──────────────────────────────────────────┐ │
│ │ SCS (Python 12 Modules) │ │
│ │ • Calibrator • Field • Operators • PoR │ │
│ │ • CRI • CLI • AutoTuner • Benchmark │ │
│ └──────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
Metatron System (13 nodes):
Binary: 13.0 bit (classical)
Tripolar: 20.6 bit (+58.5%)
Tripolar with phase: 46.6 bit (+258%)
| Algorithm | Complexity | Speedup vs. Classical |
|---|---|---|
| Quantum Walk Search | O(√N) | ~3.6× |
| VQE Ground State | O(poly(n)) | Exponential |
| QAOA MaxCut | O(p·M) | >0.75 approximation |
| Boson Sampling | #P-hard | Classically intractable |
| Grover Search | O(√N) | Quadratic |
5D State Space: (x, y, z, ψ, ω)
- Semantic dimension: ψ (resonance/weight)
- Temporal dimension: ω (phase/oscillation)
Coupling Operator:
Lift: 4D → 5D (Hyperbion absorption)
Relax: 5D → 5D (HDAG gradient descent)
Project: 5D → 4D (Funnel advection)
Contributions are welcome! Please note:
- Fork the repository
- Create feature branch (
git checkout -b feature/amazing-feature) - Add tests (
cargo test --workspace) - Check formatting (
cargo fmt --all && cargo clippy --workspace) - Commit (
git commit -m 'Add amazing feature') - Push to branch (
git push origin feature/amazing-feature) - Open pull request
- All new features need tests
- Documentation with rustdoc
- Update benchmark baselines when performance changes
- Add Python examples for new APIs
This project is licensed under the MIT License. See LICENSE for details.
- Sacred Geometry - Metatron's Cube as fundamental structure
- Quantum Computing - VQE/QAOA/VQC research
- Rust Community - nalgebra, petgraph, rayon, pyo3
- DioniceOS - 4D-5D integration framework
- GitHub Issues: https://github.com/LashSesh/qso/issues
- Documentation: See docs/ directory
- Examples: metatron_qso_py/examples/
- Lines of Code: ~8,222 Rust (Core) + ~17,200 Rust (Python bindings) + ~3,204 Python (SCS)
- Test Coverage: 109 tests (APOLLYON-5D) + 84 tests (Bridge) + inline tests
- Workspace Crates: 24 (6 main + 18 DioniceOS)
- Benchmark Suites: 8 executables with CI/CD integration
- Documentation Files: 30+ Markdown files
Made with ❤️ in Rust | Powered by Quantum Geometry | © 2025 Sebastian Klemm (Aion-Chronos; "Sol invictus Mithra")