Cleans Reddit Text Data 📜 🧹 🧼 🧽
Reddit uses some characters in the raw text of comments and submission selftexts that may need to be removed if just the plain natural text is required for NLP/Data Science tasks. This Python module cleans this text data.
import redditcleaner
text_raw = <Reddit text>
text_cleaned = redditcleaner.clean(text_raw)
If Reddit's or Pushshift's API is used to retrieve comments or submissions, the raw comment bodies or submission self texts may look like this:
Normal text\n\n**Bold**\n\n*Italic*\n\n[Link](https://fsf.org)\n\n
~~Strike-through~~\n\n`Code`\n\n^(Superscript)
\n\n>!Spoiler!<\n\n# Heading\n\nBullet list:\n\n* Item 1\n* Item 2
\n\nNumbered list:\n\n1. Item 1\n2. Item 2\n\n>Quote\n\n
Code block\n\nTable:\n\n|Cell 1.1|Cell 1.2|\n|:-|:-|\n|Cell 2.1|Cell 2.2|
\n * Find &#x200B; > "\> the "> hidden\ntext [fsf](http://fsf.org)...
This & that in a normal sentence. "manual quote"
These characters stem from (Reddit-specific) Markdown formatting. See here how the first bit looks like on Reddit.
This Python module removes these characters and returns the cleaned text. Using the example above, the output would be:
Normal text Bold Italic
Strike-through Code Superscript
Spoiler Heading Bullet list: Item 1 Item 2
Numbered list: 1. Item 1 2. Item 2 Quote
Code block Table: Cell 1.1 Cell 1.2 Cell 2.1 Cell 2.2
Find the hidden text ... This & that in a normal sentence. "manual quote"
The clean
function supports optional arguments and it can be used as a lambda to be applied on e.g. Pandas DataFrames.
Specific removals of characters can be disabled with optional arguments passed to the clean
function. Everything is on by default, but setting one to False
disables it.
def clean(text, newline=True, quote=True, bullet_point=True,
link=True, strikethrough=True, spoiler=True,
code=True, superscript=True, table=True, heading=True)
E.g.
redditcleaner.clean(text, heading=False)
This simulates a common format used when retrieving this type of data via the Reddit API:
# Put "retrieved" text into Pandas Dataframe
test_body_1 = "\n * Find &#x200B; > \"\\> the \"> hidden\ntext [fsf](http://fsf.org)... This & that in a normal sentence. \"manual quote\""
test_body_2 = "Normal text\n\n**Bold**\n\n*Italic*\n\n[Link](https://fsf.org)\n\n~~Strike-through~~\n\n`Code`\n\n^(Superscript)\n\n>!Spoiler!<\n\n# Heading\n\nBullet list:\n\n* Item 1\n* Item 2\n\nNumbered list:\n\n1. Item 1\n2. Item 2\n\n>Quote\n\n Code block\n\nTable:\n\n|Cell 1.1|Cell 1.2|\n|:-|:-|\n|Cell 2.1|Cell 2.2|"
import pandas as pd
df = pd.DataFrame([['asdf', 'test_a', test_body_1],
['fdsa', 'test_b', test_body_2]],
columns=list(['id', 'author', 'body']))
# Prepare redditcleaner
import redditcleaner
# Apply (map) the function on all body column entries
df['body'] = df['body'].map(redditcleaner.clean)
df
id | author | body | |
---|---|---|---|
0 | asdf | testa | Find the hidden text ... This & that in a normal sentence. "manual quote" |
1 | fdsa | testb | Normal text Bold Italic Strike-through Code Superscript Spoiler Heading Bullet list: Item 1 Item 2 Numbered list: 1. Item 1 2. Item 2 Quote Code block Table: Cell 1.1 Cell 1.2 Cell 2.1 Cell 2.2 |
If I missed any characters that should also be removed, please let me know or feel free to create a PR yourself! ❤️