This is a repo forked from VINS-Fusion, modified for the purpose of evaluating PnP-based stereo vision odometry.
The repo has been tested under Ubuntu20.04 + ROS noetic.
We provide evaluation script for quick start.
MLPnP(implement in OpenGV), SQPnP and IterativePnP(based on reprojection error nonlinear optimization) are implemented in OpenCV, and the method we propse as AOPnP, which is adopted from CPnP
Results on EuRoC dataset has been tested.
To change PnP solver, go to FeatureManager::initFramePoseByPnP().
Modify the output path in config.json. The inlier number per frame, solving time of the solver, pose in euroc format will be output to the dir you assign in config. You should manaully remove those .csv file every time after you run the program.
Ubuntu 20.04
ROS Noetic
OpenCV 4.5.0+
OpenGV
The SQPnP is implemented in OpenCV in 4.5.0 or later. While the cv_bridge is linked to opencv 4.2.0 in the apt source. You should build cv_bridge and opencv4.5.0 or later from source, and modify CMake dependency.
If this is helpful, cite this paper:
\alphabelows are the original vins-fusion readme.
Mono+IMU and Stereo+IMU related contents have been deleted.
Related Paper: (paper is not exactly same with code)
-
Online Temporal Calibration for Monocular Visual-Inertial Systems, Tong Qin, Shaojie Shen, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS, 2018), best student paper award pdf
-
VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator, Tong Qin, Peiliang Li, Shaojie Shen, IEEE Transactions on Robotics pdf
If you use VINS-Fusion for your academic research, please cite our related papers. bib
Ubuntu 64-bit 16.04 or 18.04, or higher. ROS Kinetic or Melodic. ROS Installation
Follow Ceres Installation.
Clone the repository and catkin_make:
cd ~/catkin_ws/src
git clone https://github.com/HKUST-Aerial-Robotics/VINS-Fusion.git
cd ../
catkin_make
source ~/catkin_ws/devel/setup.bash
(if you fail in this step, try to find another computer with clean system or reinstall Ubuntu and ROS)
Download EuRoC MAV Dataset to YOUR_DATASET_FOLDER. Take MH_01 for example, you can run VINS-Fusion with three sensor types (monocular camera + IMU, stereo cameras + IMU and stereo cameras). Open four terminals, run vins odometry, visual loop closure(optional), rviz and play the bag file respectively. Green path is VIO odometry; red path is odometry under visual loop closure.
roslaunch vins vins_rviz.launch
rosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml
(optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml
rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag
Download KITTI Odometry dataset to YOUR_DATASET_FOLDER. Take sequences 00 for example, Open two terminals, run vins and rviz respectively. (We evaluated odometry on KITTI benchmark without loop closure funtion)
roslaunch vins vins_rviz.launch
(optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yaml
rosrun vins kitti_odom_test ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yaml YOUR_DATASET_FOLDER/sequences/00/
Download KITTI raw dataset to YOUR_DATASET_FOLDER. Take 2011_10_03_drive_0027_synced for example. Open three terminals, run vins, global fusion and rviz respectively. Green path is VIO odometry; blue path is odometry under GPS global fusion.
roslaunch vins vins_rviz.launch
rosrun vins kitti_gps_test ~/catkin_ws/src/VINS-Fusion/config/kitti_raw/kitti_10_03_config.yaml YOUR_DATASET_FOLDER/2011_10_03_drive_0027_sync/
rosrun global_fusion global_fusion_node
Download car bag to YOUR_DATASET_FOLDER. Open four terminals, run vins odometry, visual loop closure(optional), rviz and play the bag file respectively. Green path is VIO odometry; red path is odometry under visual loop closure.
roslaunch vins vins_rviz.launch
rosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml
(optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml
rosbag play YOUR_DATASET_FOLDER/car.bag
We use ceres solver for non-linear optimization and DBoW2 for loop detection, a generic camera model and GeographicLib.
The source code is released under GPLv3 license.
We are still working on improving the code reliability. For any technical issues, please contact Tong Qin <qintonguavATgmail.com>.
For commercial inquiries, please contact Shaojie Shen <eeshaojieATust.hk>.


