This repository provides a Python-based tool for valuing ecosystem services using spatial model outputs. It supports unit-to-monetary conversion and integrates land-use specific valuation. The tool is applicable to services such as flood risk mitigation, soil erosion prevention, water purification, and carbon storage.
- Generic Input Support: Accepts raster outputs from different ecosystem service models.
- Flexible Valuation: Supports global and land-use specific conversion factors.
- Financial Indicators: Computes Benefit-Cost Ratio (BCR), Net Present Value (NPV), and Payback Period.
- Spatial Outputs: Produces monetary value maps to visualize benefit distribution.
- Scenario Comparison: Generates charts to compare financial results across interventions.
- Documentation: Includes full technical reference, usage instructions, and examples.
generic_es_valuation_workflow_repo/
├── README.md
├── src/
│ ├── ecosystem_service_valuation_workflow.py
│ └── test_ecosystem_service_workflow.py
├── docs/
│ ├── fcalc_documentation.md
├── data/
│ ├── sample_baseline_service_provision.tif
│ ├── sample_intervention_A_service_provision.tif
│ ├── sample_intervention_B_service_provision.tif
│ ├── sample_intervention_C_service_provision.tif
│ └── sample_land_use_map.tif
├── results/
│ ├── ecosystem_service_results/
│ │ ├── monetary_value_map_intervention_A.png
│ │ ├── monetary_value_map_intervention_B.png
│ │ ├── monetary_value_map_intervention_C.png
│ │ ├── scenario_comparison.png
│ │ └── financial_summary_report.csv
└── .gitignore
- Python 3.8+
numpyrasteriomatplotlibseabornpandas
Install dependencies using pip:
pip install numpy rasterio matplotlib seaborn pandas-
Clone the repository:
git clone https://github.com/Open-Earth-Monitor/fcalc.git cd fcalc -
Place your data: If you have your own ecosystem service model outputs (baseline and intervention rasters) and an optional land-use map, place them in the
data/directory. You can also use the provided sample data. -
Configure and Run: Open
src/ecosystem_service_valuation_workflow.pyand modify theif __name__ == "__main__":block to configure your specific scenarios, investment costs, and conversion factors. Then, run the script:python src/ecosystem_service_valuation_workflow.py
-
View Results: Outputs (monetary value maps, comparison charts, and a financial summary CSV) will be saved in the
results/ecosystem_service_results/directory.
To run the comprehensive test suite and validate the workflow:
python src/test_ecosystem_service_workflow.pyDetailed documentation, including methodology, implementation details, usage guidelines, and results analysis, can be found in the docs/ directory:
fcalc_documentation.md(Markdown format)
This project is licensed under the MIT License - see the LICENSE file for details.