This is a sample code program that builds functionalities (virtual keyboard, touchpad, and drawboard) upon hand gesture recognition project (this one) which utilizes a simple MLP using key points detected with Mediapipe.
This repository contains the following contents.
- Sample program
- Hand sign recognition model(TFLite)
- Hand controlled virtual touchpad
- Hand controlled virtual keyboard
- Hand controlled virtual drawboard
* mediapipe 0.8.1
* OpenCV 3.4.2 or Later
* Tensorflow 2.3.0 or Later<br>tf-nightly 2.5.0.dev or later (Only when creating a TFLite for an LSTM model)
- scikit-learn 0.23.2 or Later (Only if you want to display the confusion matrix)
- matplotlib 3.3.2 or Later (Only if you want to display the confusion matrix)
- pyautogui 0.9.54 or Later
Here's how to run the demo using your webcam.
python app.pyThe following options can be specified when running the demo.
- --device
Specifying the camera device number (Default:0) - --width
Width at the time of camera capture (Default:960) - --height
Height at the time of camera capture (Default:540) - --use_static_image_mode
Whether to use static_image_mode option for MediaPipe inference (Default:Unspecified) - --min_detection_confidence
Detection confidence threshold (Default:0.5) - --min_tracking_confidence
Tracking confidence threshold (Default:0.5) - --function to be enabled
- --max_num of hands detected
│ app.py
│ keypoint_classification.ipynb
│ point_history_classification.ipynb
│
├─model
│ ├─keypoint_classifier
│ │ │ keypoint.csv
│ │ │ keypoint_classifier.hdf5
│ │ │ keypoint_classifier.py
│ │ │ keypoint_classifier.tflite
│ │ └─ keypoint_classifier_label.csv
│ │
│ └─point_history_classifier
│ │ point_history.csv
│ │ point_history_classifier.hdf5
│ │ point_history_classifier.py
│ │ point_history_classifier.tflite
│ └─ point_history_classifier_label.csv
├─plugin
│ ├─cnn_model
│ │ │ dataCNN
│ │ │ cnn_labels.json
│ │ │ cnn.py
│ │ │ getdata.py
│ │ │ load_model.py
│ │ └─ make_labels.py
│ │
│ │ blackboard.py
│ │ keyboard.py
│ │ mouse.py
│ │ stablediffusion.py
│ │ UI.py
│ └─point_history_classifier
│
│
└─utils
└─cvfpscalc.py
This is a sample program for inference.
In addition, learning data (key points) for hand sign recognition,
You can also collect training data (index finger coordinate history) for finger gesture recognition.
This is a model training script for hand sign recognition.
This is a model training script for finger gesture recognition.
This directory stores files related to hand sign recognition.
The following files are stored.
- Training data(keypoint.csv)
- Trained model(keypoint_classifier.tflite)
- Label data(keypoint_classifier_label.csv)
- Inference module(keypoint_classifier.py)
This directory stores files related to finger gesture recognition.
The following files are stored.
- Training data(point_history.csv)
- Trained model(point_history_classifier.tflite)
- Label data(point_history_classifier_label.csv)
- Inference module(point_history_classifier.py)
This is directory stores the different functions as plugins that will be inserted in app.py.
The following folders/files are stored.
- cnn_model
- blackboard.py
- keyboard.py
- mouse.py
- stablediffusion.py
- UI.py
This is a module for FPS measurement.
