@@ -209,61 +209,64 @@ class Assign(NumpyArrayInitializer):
209209 >>> data_1 = paddle.ones(shape=[1, 2], dtype='float32')
210210 >>> weight_attr_1 = paddle.ParamAttr(
211211 ... name="linear_weight_1",
212- ... initializer=paddle.nn.initializer.Assign(np.array([2, 2])),
212+ ... initializer=paddle.nn.initializer.Assign(np.array([[ 2, 2], [2, 2] ])),
213213 ... )
214214 >>> bias_attr_1 = paddle.ParamAttr(
215215 ... name="linear_bias_1",
216- ... initializer=paddle.nn.initializer.Assign(np.array([2])),
216+ ... initializer=paddle.nn.initializer.Assign(np.array([2, 2 ])),
217217 ... )
218218 >>> linear_1 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_1, bias_attr=bias_attr_1)
219219 >>> print(linear_1.weight.numpy())
220- [2. 2.]
220+ [[2. 2.]
221+ [2. 2.]]
221222 >>> print(linear_1.bias.numpy())
222- [2.]
223+ [2. 2. ]
223224
224225 >>> res_1 = linear_1(data_1)
225226 >>> print(res_1.numpy())
226- [6. ]
227+ [[6. 6.] ]
227228
228229 >>> # python list
229230 >>> data_2 = paddle.ones(shape=[1, 2], dtype='float32')
230231 >>> weight_attr_2 = paddle.ParamAttr(
231232 ... name="linear_weight_2",
232- ... initializer=paddle.nn.initializer.Assign([2, 2]),
233+ ... initializer=paddle.nn.initializer.Assign([[ 2, 2], [2, 2] ]),
233234 ... )
234235 >>> bias_attr_2 = paddle.ParamAttr(
235236 ... name="linear_bias_2",
236- ... initializer=paddle.nn.initializer.Assign([2]),
237+ ... initializer=paddle.nn.initializer.Assign([2, 2 ]),
237238 ... )
238239 >>> linear_2 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_2, bias_attr=bias_attr_2)
239240 >>> print(linear_2.weight.numpy())
240- [2. 2.]
241+ [[2. 2.]
242+ [2. 2.]]
241243 >>> print(linear_2.bias.numpy())
242- [2.]
244+ [2. 2. ]
243245
244246 >>> res_2 = linear_2(data_2)
245247 >>> print(res_2.numpy())
246- [6. ]
248+ [[6. 6.] ]
247249
248250 >>> # tensor
249251 >>> data_3 = paddle.ones(shape=[1, 2], dtype='float32')
250252 >>> weight_attr_3 = paddle.ParamAttr(
251253 ... name="linear_weight_3",
252- ... initializer=paddle.nn.initializer.Assign(paddle.full([2], 2)),
254+ ... initializer=paddle.nn.initializer.Assign(paddle.full([2, 2 ], 2)),
253255 ... )
254256 >>> bias_attr_3 = paddle.ParamAttr(
255257 ... name="linear_bias_3",
256- ... initializer=paddle.nn.initializer.Assign(paddle.full([1 ], 2)),
258+ ... initializer=paddle.nn.initializer.Assign(paddle.full([2 ], 2)),
257259 ... )
258260 >>> linear_3 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_3, bias_attr=bias_attr_3)
259261 >>> print(linear_3.weight.numpy())
260- [2. 2.]
262+ [[2. 2.]
263+ [2. 2.]]
261264 >>> print(linear_3.bias.numpy())
262- [2.]
265+ [2. 2. ]
263266
264267 >>> res_3 = linear_3(data_3)
265268 >>> print(res_3.numpy())
266- [6. ]
269+ [[6. 6.] ]
267270 """
268271
269272 def __init__ (
0 commit comments