Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 25 additions & 16 deletions python/paddle/nn/initializer/assign.py
Original file line number Diff line number Diff line change
Expand Up @@ -200,7 +200,7 @@ class Assign(NumpyArrayInitializer):
A parameter initialized by the input numpy array, list, or tensor.

Examples:
.. code-block:: python
.. code-block:: pycon

>>> import paddle
>>> import numpy as np
Expand All @@ -209,55 +209,64 @@ class Assign(NumpyArrayInitializer):
>>> data_1 = paddle.ones(shape=[1, 2], dtype='float32')
>>> weight_attr_1 = paddle.ParamAttr(
... name="linear_weight_1",
... initializer=paddle.nn.initializer.Assign(np.array([2, 2])))
... initializer=paddle.nn.initializer.Assign(np.array([[2, 2], [2, 2]])),
... )
>>> bias_attr_1 = paddle.ParamAttr(
... name="linear_bias_1",
... initializer=paddle.nn.initializer.Assign(np.array([2])))
... initializer=paddle.nn.initializer.Assign(np.array([2, 2])),
... )
>>> linear_1 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_1, bias_attr=bias_attr_1)
>>> print(linear_1.weight.numpy())
[2. 2.]
[[2. 2.]
[2. 2.]]
>>> print(linear_1.bias.numpy())
[2.]
[2. 2.]

>>> res_1 = linear_1(data_1)
>>> print(res_1.numpy())
[6.]
[[6. 6.]]

>>> # python list
>>> data_2 = paddle.ones(shape=[1, 2], dtype='float32')
>>> weight_attr_2 = paddle.ParamAttr(
... name="linear_weight_2",
... initializer=paddle.nn.initializer.Assign([2, 2]))
... initializer=paddle.nn.initializer.Assign([[2, 2], [2, 2]]),
... )
>>> bias_attr_2 = paddle.ParamAttr(
... name="linear_bias_2",
... initializer=paddle.nn.initializer.Assign([2]))
... initializer=paddle.nn.initializer.Assign([2, 2]),
... )
>>> linear_2 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_2, bias_attr=bias_attr_2)
>>> print(linear_2.weight.numpy())
[2. 2.]
[[2. 2.]
[2. 2.]]
>>> print(linear_2.bias.numpy())
[2.]
[2. 2.]

>>> res_2 = linear_2(data_2)
>>> print(res_2.numpy())
[6.]
[[6. 6.]]

>>> # tensor
>>> data_3 = paddle.ones(shape=[1, 2], dtype='float32')
>>> weight_attr_3 = paddle.ParamAttr(
... name="linear_weight_3",
... initializer=paddle.nn.initializer.Assign(paddle.full([2], 2)))
... initializer=paddle.nn.initializer.Assign(paddle.full([2, 2], 2)),
... )
>>> bias_attr_3 = paddle.ParamAttr(
... name="linear_bias_3",
... initializer=paddle.nn.initializer.Assign(paddle.full([1], 2)))
... initializer=paddle.nn.initializer.Assign(paddle.full([2], 2)),
... )
>>> linear_3 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_3, bias_attr=bias_attr_3)
>>> print(linear_3.weight.numpy())
[2. 2.]
[[2. 2.]
[2. 2.]]
>>> print(linear_3.bias.numpy())
[2.]
[2. 2.]

>>> res_3 = linear_3(data_3)
>>> print(res_3.numpy())
[6.]
[[6. 6.]]
"""

def __init__(
Expand Down
27 changes: 15 additions & 12 deletions python/paddle/nn/initializer/bilinear.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ class Bilinear(Initializer):

Examples:

.. code-block:: python
.. code-block:: pycon

>>> import math

Expand All @@ -53,18 +53,21 @@ class Bilinear(Initializer):
>>> C = 2
>>> B = 8
>>> H = W = 32
>>> w_attr = paddle.ParamAttr(learning_rate=0.,
... regularizer=L2Decay(0.),
... initializer=nn.initializer.Bilinear())
>>> w_attr = paddle.ParamAttr(
... learning_rate=0.0,
... regularizer=L2Decay(0.0),
... initializer=nn.initializer.Bilinear(),
... )
>>> data = paddle.rand([B, 3, H, W], dtype='float32')
>>> conv_up = nn.Conv2DTranspose(3,
... out_channels=C,
... kernel_size=2 * factor - factor % 2,
... padding=int(
... math.ceil((factor - 1) / 2.)),
... stride=factor,
... weight_attr=w_attr,
... bias_attr=False)
>>> conv_up = nn.Conv2DTranspose(
... 3,
... out_channels=C,
... kernel_size=2 * factor - factor % 2,
... padding=int(math.ceil((factor - 1) / 2.0)),
... stride=factor,
... weight_attr=w_attr,
... bias_attr=False,
... )
>>> x = conv_up(data)

Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
Expand Down
2 changes: 1 addition & 1 deletion python/paddle/nn/initializer/initializer.py
Original file line number Diff line number Diff line change
Expand Up @@ -169,7 +169,7 @@ def calculate_gain(
A float value, which is the recommended gain for this nonlinearity function.

Examples:
.. code-block:: python
.. code-block:: pycon

>>> import paddle

Expand Down
4 changes: 2 additions & 2 deletions python/paddle/nn/initializer/kaiming.py
Original file line number Diff line number Diff line change
Expand Up @@ -309,7 +309,7 @@ class KaimingNormal(MSRAInitializer):
It is recommended to set fan_in to None for most cases.

Examples:
.. code-block:: python
.. code-block:: pycon

>>> import paddle
>>> import paddle.nn as nn
Expand Down Expand Up @@ -363,7 +363,7 @@ class KaimingUniform(MSRAInitializer):
It is recommended to set fan_in to None for most cases.

Examples:
.. code-block:: python
.. code-block:: pycon

>>> import paddle
>>> import paddle.nn as nn
Expand Down
16 changes: 10 additions & 6 deletions python/paddle/nn/initializer/normal.py
Original file line number Diff line number Diff line change
Expand Up @@ -148,17 +148,19 @@ class Normal(NormalInitializer):
A parameter initialized by Random Normal (Gaussian) distribution.

Examples:
.. code-block:: python
.. code-block:: pycon

>>> import paddle

>>> data = paddle.ones(shape=[3, 1, 2], dtype='float32')
>>> weight_attr = paddle.framework.ParamAttr(
... name="linear_weight",
... initializer=paddle.nn.initializer.Normal(mean=0.0, std=2.0))
... initializer=paddle.nn.initializer.Normal(mean=0.0, std=2.0),
... )
>>> bias_attr = paddle.framework.ParamAttr(
... name="linear_bias",
... initializer=paddle.nn.initializer.Normal(mean=0.0, std=2.0))
... initializer=paddle.nn.initializer.Normal(mean=0.0, std=2.0),
... )
>>> # doctest: +SKIP('name has been used')
>>> linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
>>> print(linear.weight)
Expand Down Expand Up @@ -359,17 +361,19 @@ class TruncatedNormal(TruncatedNormalInitializer):
A parameter initialized by truncated normal distribution (Gaussian distribution).

Examples:
.. code-block:: python
.. code-block:: pycon

>>> import paddle

>>> data = paddle.ones(shape=[3, 1, 2], dtype='float32')
>>> weight_attr = paddle.framework.ParamAttr(
... name="linear_weight",
... initializer=paddle.nn.initializer.TruncatedNormal(mean=0.0, std=2.0))
... initializer=paddle.nn.initializer.TruncatedNormal(mean=0.0, std=2.0),
... )
>>> bias_attr = paddle.framework.ParamAttr(
... name="linear_bias",
... initializer=paddle.nn.initializer.TruncatedNormal(mean=0.0, std=2.0))
... initializer=paddle.nn.initializer.TruncatedNormal(mean=0.0, std=2.0),
... )
>>> # doctest: +SKIP('name has been used')
>>> linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
>>> print(linear.weight)
Expand Down
2 changes: 1 addition & 1 deletion python/paddle/nn/initializer/orthogonal.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ class Orthogonal(Initializer):
A parameter initialized by orthogonal initialized.

Examples:
.. code-block:: python
.. code-block:: pycon

>>> import paddle

Expand Down
16 changes: 10 additions & 6 deletions python/paddle/nn/initializer/xavier.py
Original file line number Diff line number Diff line change
Expand Up @@ -316,17 +316,19 @@ class XavierNormal(XavierInitializer):
A parameter initialized by Xavier weight, using a normal distribution.

Examples:
.. code-block:: python
.. code-block:: pycon

>>> import paddle
>>> paddle.seed(1)
>>> data = paddle.ones(shape=[3, 1, 2], dtype='float32')
>>> weight_attr = paddle.framework.ParamAttr(
... name="linear_weight",
... initializer=paddle.nn.initializer.XavierNormal())
... initializer=paddle.nn.initializer.XavierNormal(),
... )
>>> bias_attr = paddle.framework.ParamAttr(
... name="linear_bias",
... initializer=paddle.nn.initializer.XavierNormal())
... initializer=paddle.nn.initializer.XavierNormal(),
... )
>>> linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
>>> print(linear.weight)
Parameter containing:
Expand Down Expand Up @@ -386,17 +388,19 @@ class XavierUniform(XavierInitializer):
A parameter initialized by Xavier weight, using a uniform distribution.

Examples:
.. code-block:: python
.. code-block:: pycon

>>> import paddle
>>> paddle.seed(1)
>>> data = paddle.ones(shape=[3, 1, 2], dtype='float32')
>>> weight_attr = paddle.framework.ParamAttr(
... name="linear_weight",
... initializer=paddle.nn.initializer.XavierUniform())
... initializer=paddle.nn.initializer.XavierUniform(),
... )
>>> bias_attr = paddle.framework.ParamAttr(
... name="linear_bias",
... initializer=paddle.nn.initializer.XavierUniform())
... initializer=paddle.nn.initializer.XavierUniform(),
... )
>>> linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr)
>>> print(linear.weight)
Parameter containing:
Expand Down
2 changes: 1 addition & 1 deletion python/paddle/nn/utils/clip_grad_norm_.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def clip_grad_norm_(
Total norm of the parameter gradients (treated as a single vector).

Example:
.. code-block:: python
.. code-block:: pycon

>>> import paddle

Expand Down
2 changes: 1 addition & 1 deletion python/paddle/nn/utils/spectral_norm_hook.py
Original file line number Diff line number Diff line change
Expand Up @@ -209,7 +209,7 @@ def spectral_norm(
Layer, the original layer with the spectral norm hook.

Examples:
.. code-block:: python
.. code-block:: pycon

>>> import paddle
>>> from paddle.nn import Conv2D
Expand Down
2 changes: 1 addition & 1 deletion python/paddle/nn/utils/weight_norm_hook.py
Original file line number Diff line number Diff line change
Expand Up @@ -233,7 +233,7 @@ def remove_weight_norm(layer: Layer, name: str = 'weight') -> Layer:
Layer, the origin layer without weight norm

Examples:
.. code-block:: python
.. code-block:: pycon

>>> import paddle
>>> from paddle.nn import Conv2D
Expand Down
Loading