-
Notifications
You must be signed in to change notification settings - Fork 723
/
net.py
92 lines (86 loc) · 3.4 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
import numpy as np
import os
class MatchPyramidLayer(nn.Layer):
def __init__(self, emb_path, vocab_size, emb_size, kernel_num, conv_filter,
conv_act, hidden_size, out_size, pool_size, pool_stride,
pool_padding, pool_type, hidden_act):
super(MatchPyramidLayer, self).__init__()
self.emb_path = emb_path
self.vocab_size = vocab_size
self.emb_size = emb_size
self.kernel_num = kernel_num
self.conv_filter = conv_filter
self.conv_act = conv_act
self.hidden_size = hidden_size
self.out_size = out_size
self.pool_size = pool_size
self.pool_stride = pool_stride
self.pool_padding = pool_padding
self.pool_type = pool_type
self.hidden_act = hidden_act
if os.path.isfile(self.emb_path):
embedding_array = np.load(self.emb_path)
self.emb = paddle.nn.Embedding(
self.vocab_size,
self.emb_size,
padding_idx=193367,
weight_attr=paddle.ParamAttr(
name="word_embedding",
initializer=nn.initializer.Assign(embedding_array)))
else:
self.emb = paddle.nn.Embedding(
self.vocab_size,
self.emb_size,
padding_idx=193367,
weight_attr=paddle.ParamAttr(
name="word_embedding",
initializer=nn.initializer.XavierNormal()))
self.conv = nn.Conv2D(
in_channels=1,
out_channels=self.kernel_num,
stride=1,
padding="SAME",
kernel_size=self.conv_filter)
self.fc1 = paddle.nn.Linear(
in_features=240, out_features=self.hidden_size)
self.fc2 = paddle.nn.Linear(
in_features=self.hidden_size, out_features=self.out_size)
def forward(self, inputs):
left_emb = self.emb(inputs[0])
right_emb = self.emb(inputs[1])
cross = paddle.matmul(left_emb, right_emb, transpose_y=True)
cross = paddle.reshape(cross, [-1, 1, cross.shape[1], cross.shape[2]])
conv = self.conv(cross)
if self.conv_act == "relu":
conv = F.relu(conv)
if self.pool_type == "max":
pool = F.max_pool2d(
conv,
kernel_size=self.pool_size,
stride=self.pool_stride,
padding=self.pool_padding)
reshape = paddle.reshape(pool, [
-1, list(pool.shape)[1] * list(pool.shape)[2] * list(pool.shape)[3]
])
hid = self.fc1(reshape)
if self.hidden_act == "relu":
relu_hid = F.relu(hid)
prediction = self.fc2(relu_hid)
return prediction