Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add pandas_json notebook #436

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions _toc.yml
Original file line number Diff line number Diff line change
@@ -56,6 +56,7 @@ parts:
- file: core/pandas
sections:
- file: core/pandas/pandas
- file: core/pandas/pandas_json
- file: core/data-formats
sections:
- file: core/data-formats/netcdf-cf
392 changes: 392 additions & 0 deletions core/pandas/pandas_json.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,392 @@
{
Copy link
Contributor

@clyne clyne Nov 21, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The formatting for "object" and "dtype" is getting screwed up in the rendered output


Reply via ReviewNB

"cells": [
{
"cell_type": "markdown",
"id": "6e124235-3846-4fcb-b533-10fa5856b4b4",
"metadata": {},
"source": [
"\n",
"# Pandas: Working with a JSON file"
]
},
{
"cell_type": "markdown",
"id": "6e75bb80-da84-47a9-ae2d-210eb06d492e",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"id": "9d226e98-85a1-4197-a757-448bd2bf4563",
"metadata": {},
"source": [
"## Overview\n",
"In this notebook, we will create a [Pandas Dataframe](https://pandas.pydata.org/docs/user_guide/dsintro.html#dataframe) from a remotely-served [JSON](https://www.json.org/) file. This particular file contains forecasted [solar wind](https://www.swpc.noaa.gov/phenomena/solar-wind) parameters from NOAA's [Space Weather Prediction Center](https://www.swpc.noaa.gov).\n",
"\n",
"1. Read in a JSON file\n",
"1. Reformat the `Dataframe`\n",
"1. Visualize the dataset"
]
},
{
"cell_type": "markdown",
"id": "daeabc7d-d4f6-4f9f-aad7-679123b9d2fb",
"metadata": {},
"source": [
"## Prerequisites\n",
"\n",
"| Concepts | Importance | Notes |\n",
"| --- | --- | --- |\n",
"| [Pandas](https://foundations.projectpythia.org/core/pandas/pandas.html) | Necessary | |\n",
"\n",
"- **Time to learn**: 10 minutes\n"
]
},
{
"cell_type": "markdown",
"id": "7b875611-44ef-4b1f-9453-f2fa84bb4d82",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"id": "c732c9d1-0e00-4d9b-8e29-73ce71c99499",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d48491f-4332-4eff-af72-0382c6c5794a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"id": "690e69eb-5ec0-458d-962f-a25cdf8983dc",
"metadata": {},
"source": [
"## Read in a JSON file"
]
},
{
"cell_type": "markdown",
"id": "630ace3c-7e81-45a8-a884-a045d7afbae6",
"metadata": {},
"source": [
"### NOAA's SWPC has a variety of forecast output in JSON format. Here, we create a `Dataframe` Pandas' `read_json` method from the current 1-day plasma forecast."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3be45f7e-8f1b-4645-8eff-6d7d0c6976a4",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df = pd.read_json(\n",
" \"https://services.swpc.noaa.gov/products/solar-wind/plasma-1-day.json\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2128b21f-7d34-45f6-b08f-23287a7761ea",
"metadata": {},
"source": [
"Examine the `Dataframe`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "deea1ad0-78ef-4b47-8ed4-951b2f8e2a5b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"id": "1b34e2ce-19a9-46b6-a346-da9cc814a8a6",
"metadata": {},
"source": [
"## Reformat the `Dataframe`"
]
},
{
"cell_type": "markdown",
"id": "61ff9856-2a64-4606-8c13-4cc1bbe6f384",
"metadata": {},
"source": [
"Notice that the column headers look to be in the `Dataframe`'s first row. Let's modify it."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5d198bce-c48e-4c77-9785-ab26bfaac669",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Set the columns to be the values of the first row. Then drop that first row.\n",
"df = df.rename(columns=df.iloc[0]).drop(df.index[0])"
]
},
{
"cell_type": "markdown",
"id": "e3c8f341-a5f6-46f0-ac1d-2d1feeb4631d",
"metadata": {},
"source": [
"Examine the reformatted `Dataframe`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7a457cb3-6203-45d5-9467-c8c5ffc07e52",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"id": "43bfed63-0fa2-4d3a-8a0b-162386dace6f",
"metadata": {},
"source": [
"### Set the `Dataframe`'s index to the timestamped column."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5e1f2933-6193-4f2d-b012-7c5f18a3999b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df.index"
]
},
{
"cell_type": "markdown",
"id": "4b3ade9e-eebd-49d0-a321-624939d42d7d",
"metadata": {},
"source": [
"Currently, the `Dataframe` has a *default index* (i.e., a range of integers). For time series data (i.e., time is the independent variable), it is [good practice](https://pandas.pydata.org/docs/user_guide/timeseries.html) to use a time-based column as the index."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "83cdc00a-2a38-4ef7-ac33-c2f6875c2dc3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df = df.set_index('time_tag')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9abc6605-9676-48ef-a9c5-57ef13b21eed",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"id": "7d4e6843-638b-4801-af35-9ddbc191378a",
"metadata": {},
"source": [
"### Check and edit the `dtypes` of the independent and dependent variables"
]
},
{
"cell_type": "markdown",
"id": "7fc15d05-b3cb-4575-a4c5-c25123613bf7",
"metadata": {},
"source": [
"In this case, the `Dataframe`'s index corresponds to the independent variable, and the columns correspond to the dependent variables."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b8341c2d-7d4b-4960-93e6-b90670aab9a3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df.index"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0e165dc3-1a51-406d-9b31-b92a16721a1d",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df.dtypes"
]
},
{
"cell_type": "markdown",
"id": "90c69195-8111-4c0f-bb6f-17aa036b7147",
"metadata": {
"tags": []
},
"source": [
"They are all `object`s ... and as a result won't be amenable to typical time-series visualization methods. Change them to more appropriate `dtype`s ... `float32` for the dependent variables, and `datetime64` for the time-based one."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "32beea01-3390-4eb6-9d62-090ad70ba2a9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"for col in df.columns:\n",
" df[col] = df[col].astype(\"float32\")\n",
"df.index = pd.to_datetime(df.index)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eba917fd-6167-4726-ae0f-79c064d4ef72",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df.index = pd.to_datetime(df.index)"
]
},
{
"cell_type": "markdown",
"id": "38611e12-3f66-4e39-ac83-2021df2bf63e",
"metadata": {},
"source": [
"## Visualize the dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "634749f1-f613-4e90-aff8-6efdd038d251",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df.temperature.plot(figsize=(10, 8));"
]
},
{
"cell_type": "markdown",
"id": "5d085493-0e98-4e6f-a190-a948bd44f53a",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"id": "5a43f367-1bdf-46b6-b253-f40ff965ff02",
"metadata": {},
"source": [
"## Summary\n",
"Pandas has several reader functions for differently-formatted tabular datasets. In this notebook, we created a `Dataframe` via Pandas `read_json` function, and then manipulated the `Dataframe` to allow for a useful time-series visualization."
]
},
{
"cell_type": "markdown",
"id": "419af5fe-4cfc-466a-a4b0-1df66ddae8f8",
"metadata": {},
"source": [
"<div class=\"admonition alert alert-warning\">\n",
" <p class=\"admonition-title\" style=\"font-weight:bold\">Note:</p>\n",
" There is no strict format specification for JSON files. The strategy we followed to create and reformat the <code>Dataframe</code> in this notebook will likely need to change for other JSON-formatted datasets you may encounter!\n",
"</div>"
]
},
{
"cell_type": "markdown",
"id": "62c4be7e-84a8-497d-a799-a74e5201c567",
"metadata": {},
"source": [
"### What's next?\n",
"Future [Project Pythia Foundations](https://foundations.projectpythia.org) Pandas notebooks will explore additional file format-specific reader methods."
]
},
{
"cell_type": "markdown",
"id": "dd8c3c60-d703-4b22-b796-8c385130cfa2",
"metadata": {},
"source": [
"## Resources and references\n",
"1. [pandas](https://pandas.pydata.org)\n",
"1. [JSON](https://json.io)\n",
"1. [NOAA SWPC](https://www.swpc.noaa.gov)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}