Skip to content

QAMPspring2023/qgpt-issue-31

Repository files navigation

qgpt-issue-31

This repository contains the code, machine learning models, and datasets used in the paper "A Survey of Classical and Quantum Sequence Models"

This study is a review and comprehensive analysis of various classical and quantum sequence models. It also highlights and delves deep into some of the most recent developments in quantum sequence models. Particular attention has been placed on Quantum Self Attention Nueral Networks(QSANN) and Quantum Recurrent Nueral Networks(QRNN). We implement these models and parallely compare them with their classical counterparts. We also evaluate the performance of quantumm and classical self attention nueral networks on vision related tasks. The implementations are as follows:

Datasets used

Folder hierarchy

.
├── Checkpoint presentations
│   └── QAMP_31_first_checkpoint_1_final.pptx
├── Classical_Transformer.ipynb
├── Datasets
│   ├── MC RP Dataset
│   │   ├── mc_dev_data.txt
│   │   ├── mc_test_data.txt
│   │   ├── mc_train_data.txt
│   │   ├── rp_test_data.txt
│   │   └── rp_train_data.txt
│   └── Sentiment Labelled Sentences Dataset
│       ├── amazon_cells_labelled.txt
│       ├── imdb_labelled.txt
│       ├── readme.txt
│       └── yelp_labelled.txt
├── Presentations shared
│   ├── Classical_attention_survey_Anu.pdf
│   ├── QML_Image_Encoding_paper summary.pptx
│   ├── QRL _35_ppt_QAMP.pptx
│   ├── QRNN_QAMP.pptx
│   ├── Transformers_Presentation_Anu.pdf
│   └── gpt models.pdf
├── QRNN
│   ├── Amp_encoding_QRNN.ipynb
│   ├── QRNN.ipynb
│   ├── QRNN_PENNY_TFIDF.ipynb
│   ├── QRNN_Pennylane.ipynb
│   ├── QRNN_QISKIT_TFIDF.ipynb
│   └── QRNN_qiskit.ipynb
├── QRNN Image Classification.ipynb
├── QSANN codes
│   ├── Modified_QSANN_pennylane_w_pred_trained_model.ipynb
│   ├── QSANN_pennylane.ipynb
│   ├── QSANN_qiskit.ipynb
│   ├── QSANN_qiskit_with_preprocessor.ipynb
│   └── Qsann_with_preprocessor.ipynb
├── QTT
│   ├── Feat_eco_model_222111_vocab_size20_mc
│   ├── Feat_eco_model_222121_vocab_size100_rp
│   └── QSANN_qiskit_experiment_pos_enco.ipynb
├── QVT
│   ├── Quantum Vision Transformer-PennyLane-Binary.ipynb
│   └── Quantum Vision Transformer-PennyLane-MutliClass.ipynb
├── README.md
├── RNN.ipynb
└── Survey_plot.ipynb

Installation Instructions

Get the code :

git clone https://github.com/QAMPspring2023/qgpt-issue-31.git

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •