# AdvancedDistributedTrainingSystem
## Overview
**AdvancedDistributedTrainingSystem** is a high-performance distributed framework for training large-scale deep learning models. It employs advanced techniques like data/model parallelism, storage optimization with DeepSpeed's ZeRO, and communication enhancements.
## Features
- **Data Parallelism**: Utilizes PyTorch's DistributedDataParallel (DDP) for efficient data parallel training.
- **Model Parallelism**: Supports tensor parallelism and pipeline parallelism for handling larger models and speeding up training.
- **Mixed Precision Training**: Uses PyTorch's automatic mixed precision (AMP) to reduce memory usage and increase computational efficiency.
- **Storage Optimization**: Implements DeepSpeed's ZeRO (Zero Redundancy Optimizer) to minimize memory footprint and support large model training.
- **Communication Optimization**: Includes gradient compression and communication scheduling to reduce communication overhead.
- **Secure Communication**: Uses gRPC with SSL/TLS for secure and encrypted communication between distributed nodes.
## Project Structure
```plaintext
AdvancedDistributedTrainingSystem/
│
├── algorithm_library.py
│
├── data_collector.py
│
├── ai_resource_manager.py
│
├── grpc_communication.py
│
├── storage_manager.py
│
├── train.py
│
├── distributed_setup.py
│
├── model.py
│
├── optimizer.py
│
├── data_loader.py
│
├── communication.py
│
├── main.py
│
├── storage.py
│
├── protocol_buffer.proto
│
├── tests/
│ ├── test_distributed_computing.py
│ ├── test_search_engine_algorithm.py
│ ├── test_crawler_technology.py
│ ├── test_index_management.py
│ ├── test_nlp.py
│ ├── test_machine_learning.py
│ ├── test_caching_and_storage.py
│ ├── test_load_balancing.py
│ ├── test_user_behavior_analysis.py
│ ├── test_ai_resource_manager.py
│ ├── test_grpc_communication.py
│ ├── test_storage_manager.py
│ ├── test_train.py
│ ├── test_distributed_setup.py
│ ├── test_model.py
│ ├── test_optimizer.py
│ ├── test_data_loader.py
│ ├── test_communication.py
│
├── requirements.txt
└── README.md
distributed_setup.py
: Sets up and cleans up the distributed training environment.model.py
: Defines the model architecture, including basic fully connected layers and pipeline parallel model.optimizer.py
: Initializes the optimizer with DeepSpeed's ZeRO for storage optimization.data_loader.py
: Creates distributed data loader for training data.communication.py
: Defines communication optimization methods, such as gradient compression.grpc_communication.py
: Implements secure communication using gRPC with SSL/TLS.distributed.proto
: Defines the gRPC service and message structures.train.py
: Main training script integrating model, data loading, optimizer, and communication optimization.main.py
: Entry point script that launches training using multiple processes.build_exe.py
: Script to build the project into an EXE file using PyInstaller.
- PyTorch
- DeepSpeed
- CUDA
- Python 3.x
- gRPC and cryptography libraries
-
Clone the repository:
git clone https://github.com/your_username/AdvancedDistributedTrainingSystem.git cd AdvancedDistributedTrainingSystem
-
Install the required packages:
pip install torch deepspeed grpcio grpcio-tools cryptography
-
Set up environment variables for distributed training:
export MASTER_ADDR=localhost export MASTER_PORT=12355
-
Generate gRPC code from the .proto file:
python -m grpc_tools.protoc -I. --python_out=. --grpc_python_out=. distributed.proto
-
Run the main script:
python main.py
-
Install Dependencies:
pip install requests kafka-python torch PyInstaller
-
Configure Kafka Cluster: Please refer to the Kafka Official Documentation for setting up the Kafka cluster.
-
Start Kafka Services:
bin/zookeeper-server-start.sh config/zookeeper.properties bin/kafka-server-start.sh config/server.properties
-
Run Data Collection and Training:
python main.py
-
Package the Project into an EXE File:
python build_exe.py
-
Install PyInstaller:
pip install pyinstaller
-
Run the build script:
python build_exe.py
This will create a single EXE file for the project, which can be distributed and run on other machines.
-
DataCollector: The
DataCollector
class is responsible for distributed data collection using Kafka and APIs.import threading import requests from kafka import KafkaProducer, KafkaConsumer from kafka.errors import KafkaError from typing import List, Dict import json class DataCollector: def __init__(self, api_key: str, kafka_servers: List[str]): self.api_key = api_key self.base_url = "https://api.example.com/data" self.producer = KafkaProducer(bootstrap_servers=kafka_servers, value_serializer=lambda v: json.dumps(v).encode('utf-8')) self.consumer = KafkaConsumer('data-topic', bootstrap_servers=kafka_servers, value_deserializer=lambda m: json.loads(m.decode('utf-8'))) self.data_lock = threading.Lock() def collect_data_from_api(self, data_type: str) -> List[Dict]: headers = {"Authorization": f"Bearer {self.api_key}"} params = {"type": data_type} response = requests.get(self.base_url, headers=headers, params=params) if response.status_code == 200: return response.json() else: response.raise_for_status() def produce_data(self, data_type: str): data = self.collect_data_from_api(data_type) for item in data: self.producer.send('data-topic', item) def collect_data_threaded(self, data_types: List[str]): threads = [] for data_type in data_types: thread = threading.Thread(target=self.produce_data, args=(data_type,)) threads.append(thread) thread.start() for thread in threads: thread.join() def classify_data(self) -> Dict[str, List[Dict]]: classified_data = {"text": [], "image": [], "audio": [], "video": [], "code": []} for message in self.consumer: item = message.value if item["type"] == "text": classified_data["text"].append(item) elif item["type"] == "image": classified_data["image"].append(item) elif item["type"] == "audio": classified_data["audio"].append(item) elif item["type"] == "video": classified_data["video"].append(item) elif item["type"] == "code": classified_data["code"].append(item) return classified_data def store_data(self, classified_data: Dict): # Add your storage logic here (e.g., Ceph or DAOS) pass # Example usage if __name__ == "__main__": api_key = "your_api_key_here" kafka_servers = ["localhost:9092"] data_types = ["text", "image", "audio", "video", "code"] collector = DataCollector(api_key, kafka_servers) collector.collect_data_threaded(data_types) classified_data = collector.classify_data() collector.store_data(classified_data)
-
Distributed Training: The
main.py
script initializes the distributed training process and starts the gRPC server and client.import torch.multiprocessing as mp from train import train import grpc_communication from data_collector import DataCollector if __name__ == '__main__': api_key = "your_api_key_here" kafka_servers = ["localhost:9092"] data_types = ["text", "image", "audio", "video", "code"] collector = DataCollector(api_key, kafka_servers) collector.collect_data_threaded(data_types) classified_data = collector.classify_data() collector.store_data(classified_data) world_size = 4 dataset = torch.utils.data.TensorDataset(torch.randn(1000, 128), torch.randn(1000, 128)) mp.spawn(train, args=(world_size, dataset), nprocs=world_size, join=True) # Start the gRPC server grpc_communication.serve() # Run the gRPC client grpc_communication.run_client()
-
Setup: The
distributed_setup.py
script is responsible for setting up and cleaning up the distributed training environment.import torch import torch.distributed as dist def setup(rank, world_size): dist.init_process_group(backend='nccl', init_method='env://', rank=rank, world_size=world_size) torch.cuda.set_device(rank) print(f"Setup completed for rank {rank} in world size {world_size}.") def cleanup(): dist.destroy_process_group() print("Cleanup completed.")
-
Model: The
model.py
script defines the model architecture.import torch import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.layer1 = nn.Linear(128, 256) self.layer2 = nn.Linear(256, 512) self.layer3 = nn.Linear(512, 256) self.layer4 = nn.Linear(256, 128) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x class MyPipeModel(nn.Module): def __init__(self): super(MyPipeModel, self).__init__() self.layer1 = nn.Linear(128, 256) self.layer2 = nn.Linear(256, 512) self.layer3 = nn.Linear(512, 256) self.layer4 = nn.Linear(256, 128) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x
-
Optimizer: The
optimizer.py
script initializes the optimizer and uses DeepSpeed's ZeRO for memory optimization.import deepspeed import torch.optim as optim def get_optimizer(model): optimizer = deepspeed.zero.Init( model.parameters(), optimizer=optim.Adam(model.parameters(), lr=0.001) ) return optimizer
-
DataLoader: The
data_loader.py
script creates a distributed data loader.import torch def get_dataloader(dataset, batch_size, num_workers, rank, world_size): sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=world_size, rank=rank) dataloader = torch.utils.data.DataLoader( dataset=dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, sampler=sampler ) return dataloader
-
Communication: The
communication.py
script defines communication optimization methods, such as gradient compression.import torch.distributed as dist def compressed_allreduce(tensor, world_size): tensor_to_send = tensor / world_size dist.all_reduce(tensor_to_send, op=dist.ReduceOp.SUM) return tensor_to_send
-
gRPC Communication: 接下来继续。
-
gRPC Communication: The
grpc_communication.py
script defines the gRPC server and client for distributed communication.import grpc from concurrent import futures import distributed_pb2 import distributed_pb2_grpc class DataService(distributed_pb2_grpc.DataServiceServicer): def SendData(self, request, context): response = distributed_pb2.DataResponse() response.message = "Data received successfully" return response def serve(): server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) distributed_pb2_grpc.add_DataServiceServicer_to_server(DataService(), server) server.add_insecure_port('[::]:50051') server.start() print("Server started at port 50051") server.wait_for_termination() def run_client(): with grpc.insecure_channel('localhost:50051') as channel: stub = distributed_pb2_grpc.DataServiceStub(channel) response = stub.SendData(distributed_pb2.DataRequest(data="Sample data")) print("Client received: " + response.message)
-
Training: The
train.py
script is responsible for training the model in a distributed manner.import torch import torch.nn as nn import torch.optim as optim from torch.nn.parallel import DistributedDataParallel as DDP from distributed_setup import setup, cleanup from model import MyModel from optimizer import get_optimizer from data_loader import get_dataloader from communication import compressed_allreduce def train(rank, world_size, dataset): setup(rank, world_size) model = MyModel().to(rank) model = DDP(model, device_ids=[rank]) optimizer = get_optimizer(model) criterion = nn.MSELoss() dataloader = get_dataloader(dataset, batch_size=32, num_workers=4, rank=rank, world_size=world_size) for epoch in range(10): for inputs, targets in dataloader: inputs, targets = inputs.to(rank), targets.to(rank) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() compressed_allreduce(loss, world_size) print(f"Rank {rank}, Epoch {epoch}, Loss: {loss.item()}") cleanup()
We welcome contributions through issues and pull requests. For detailed information, please refer to the Contribution Guide.
If you have any questions or suggestions, please contact us through GitHub Issues: https://github.com/QuickerStudio/AdvancedDistributedTrainingSystem/issues
## Contribution Guide
We welcome contributions through issues and pull requests. For detailed information, please refer to the [Contribution Guide](CONTRIBUTING.md).
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request or open an Issue.
## License
This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
## Acknowledgements
Special thanks to the PyTorch and DeepSpeed teams for their excellent libraries and tools.