Skip to content

SameerSenapati17/Iris-Predictor-App

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🌸 Iris Species Prediction App

A Streamlit-based interactive machine learning application for predicting the species of iris flowers using multiple classifiers. This app supports single predictions, batch predictions via CSV, visualizations, and SHAP-based interpretability.


πŸš€ Features

  • Model Selection: Random Forest, SVM, Logistic Regression
  • Single Prediction: Enter feature values using sliders
  • Batch Prediction: Upload CSV and get predictions with download option
  • Data Visualizations: Pairplots, scatterplots
  • Model Evaluation: Accuracy, confusion matrix, classification report
  • SHAP Explanation: Visual force plot for Random Forest predictions
  • Custom Training: Upload your own training dataset (with the same structure)

πŸ“‚ Project Structure

Streamlit_ml_app/
β”œβ”€β”€ classification.py         # Main Streamlit app
β”œβ”€β”€ requirements.txt          # Python dependencies
└── README.md                 # Project documentation

βš™οΈ Setup Instructions

  1. Clone the repository
git clone https://github.com/yourusername/Streamlit_ml_app.git
cd Streamlit_ml_app
  1. Create and activate a virtual environment (optional but recommended)
python -m venv .venv
# Activate it
# On Windows:
.venv\Scripts\activate
# On macOS/Linux:
source .venv/bin/activate
  1. Install dependencies
pip install -r requirements.txt
  1. Run the app
streamlit run classification.py

πŸ“Œ How to Use

  1. Choose a model from the sidebar.
  2. Set hyperparameters and provide input for single prediction.
  3. Upload a CSV file for batch prediction (same column format as iris dataset).
  4. View model metrics and SHAP explanations if using Random Forest.
  5. (Optional) Upload your own dataset for training under "Custom Training Data".

🧲 Example CSV Format

sepal length (cm),sepal width (cm),petal length (cm),petal width (cm)
5.1,3.5,1.4,0.2
6.2,3.4,5.4,2.3
...

πŸ–ΌοΈ Screenshots

image

πŸ“„ License

MIT License Β© 2025 Sameer017

About

🌸 Interactive Iris Flower Classifier Web App using Streamlit and Scikit-learn

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages