-
-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Automatic build\nPublished by build of: SciML/SciMLBenchmarks.jl@40c4bce
- Loading branch information
1 parent
f326a26
commit d080fda
Showing
6 changed files
with
257 additions
and
0 deletions.
There are no files selected for viewing
194 changes: 194 additions & 0 deletions
194
markdown/AutomaticDifferentiationSparse/ManualLoopDissusionSparseAD.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
--- | ||
author: "Yolhan Mannes" | ||
title: "Diffusion operator loop sparse AD benchmarks" | ||
--- | ||
```julia | ||
using DifferentiationInterface | ||
using DifferentiationInterfaceTest | ||
using LinearAlgebra | ||
using SparseConnectivityTracer: TracerSparsityDetector | ||
using SparseMatrixColorings | ||
import Enzyme,ForwardDiff,Mooncake | ||
``` | ||
|
||
|
||
|
||
|
||
## Backends tested | ||
|
||
```julia | ||
bcks = [ | ||
AutoEnzyme(mode=Enzyme.Reverse), | ||
AutoEnzyme(mode=Enzyme.Forward), | ||
AutoMooncake(config=nothing), | ||
AutoForwardDiff(), | ||
AutoSparse( | ||
AutoForwardDiff(); | ||
sparsity_detector=TracerSparsityDetector(), | ||
coloring_algorithm=GreedyColoringAlgorithm() | ||
), | ||
AutoSparse( | ||
AutoEnzyme(mode=Enzyme.Forward); | ||
sparsity_detector=TracerSparsityDetector(), | ||
coloring_algorithm=GreedyColoringAlgorithm() | ||
) | ||
] | ||
``` | ||
|
||
``` | ||
6-element Vector{ADTypes.AbstractADType}: | ||
ADTypes.AutoEnzyme(mode=EnzymeCore.ReverseMode{false, false, EnzymeCore.FF | ||
IABI, false, false}()) | ||
ADTypes.AutoEnzyme(mode=EnzymeCore.ForwardMode{false, EnzymeCore.FFIABI, f | ||
alse, false}()) | ||
ADTypes.AutoMooncake{Nothing}(nothing) | ||
ADTypes.AutoForwardDiff() | ||
ADTypes.AutoSparse(dense_ad=ADTypes.AutoForwardDiff(), sparsity_detector=S | ||
parseConnectivityTracer.TracerSparsityDetector(), coloring_algorithm=Sparse | ||
MatrixColorings.GreedyColoringAlgorithm{:direct, SparseMatrixColorings.Natu | ||
ralOrder}(SparseMatrixColorings.NaturalOrder())) | ||
ADTypes.AutoSparse(dense_ad=ADTypes.AutoEnzyme(mode=EnzymeCore.ForwardMode | ||
{false, EnzymeCore.FFIABI, false, false}()), sparsity_detector=SparseConnec | ||
tivityTracer.TracerSparsityDetector(), coloring_algorithm=SparseMatrixColor | ||
ings.GreedyColoringAlgorithm{:direct, SparseMatrixColorings.NaturalOrder}(S | ||
parseMatrixColorings.NaturalOrder())) | ||
``` | ||
|
||
|
||
|
||
|
||
|
||
## Diffusion operator simple loop | ||
|
||
```julia | ||
uin() = 0.0 | ||
uout() = 0.0 | ||
function Diffusion(u) | ||
du = zero(u) | ||
for i in eachindex(du,u) | ||
if i == 1 | ||
ug = uin() | ||
ud = u[i+1] | ||
elseif i == length(u) | ||
ug = u[i-1] | ||
ud = uout() | ||
else | ||
ug = u[i-1] | ||
ud = u[i+1] | ||
end | ||
du[i] = ug + ud -2*u[i] | ||
end | ||
return du | ||
end; | ||
``` | ||
|
||
|
||
|
||
|
||
## Manual jacobian | ||
```julia | ||
function DDiffusion(u) | ||
A = diagm( | ||
-1 => ones(length(u)-1), | ||
0=>-2 .*ones(length(u)), | ||
1 => ones(length(u)-1)) | ||
return A | ||
end; | ||
``` | ||
|
||
|
||
|
||
|
||
## Define Scenarios | ||
|
||
```julia | ||
u = rand(1000) | ||
scenarios = [ Scenario{:jacobian,:out}(Diffusion,u,res1=DDiffusion(u))]; | ||
``` | ||
|
||
|
||
|
||
|
||
## Run Benchmarks | ||
|
||
```julia | ||
df = benchmark_differentiation(bcks, scenarios) | ||
``` | ||
|
||
``` | ||
Test Summary: | ||
| Pass Total Time | ||
Testing benchmarks | ||
| 12 12 1m32.6s | ||
ADTypes.AutoEnzyme(mode=EnzymeCore.ReverseMode{false, false, EnzymeCore.F | ||
FIABI, false, false}()) | ||
| 2 2 23.8s | ||
ADTypes.AutoEnzyme(mode=EnzymeCore.ForwardMode{false, EnzymeCore.FFIABI, | ||
false, false}()) | ||
| 2 2 22.7s | ||
ADTypes.AutoMooncake{Nothing}(nothing) | ||
| 2 2 34.5s | ||
ADTypes.AutoForwardDiff() | ||
| 2 2 4.1s | ||
ADTypes.AutoSparse(dense_ad=ADTypes.AutoForwardDiff(), sparsity_detector= | ||
SparseConnectivityTracer.TracerSparsityDetector(), coloring_algorithm=Spars | ||
eMatrixColorings.GreedyColoringAlgorithm{:direct, SparseMatrixColorings.Nat | ||
uralOrder}(SparseMatrixColorings.NaturalOrder())) | ||
| 2 2 4.1s | ||
ADTypes.AutoSparse(dense_ad=ADTypes.AutoEnzyme(mode=EnzymeCore.ForwardMod | ||
e{false, EnzymeCore.FFIABI, false, false}()), sparsity_detector=SparseConne | ||
ctivityTracer.TracerSparsityDetector(), coloring_algorithm=SparseMatrixColo | ||
rings.GreedyColoringAlgorithm{:direct, SparseMatrixColorings.NaturalOrder}( | ||
SparseMatrixColorings.NaturalOrder())) | 2 2 3.2s | ||
12×12 DataFrame | ||
Row │ backend scenario | ||
o ⋯ | ||
│ Abstract… Scenario… | ||
S ⋯ | ||
─────┼───────────────────────────────────────────────────────────────────── | ||
───── | ||
1 │ AutoEnzyme(mode=ReverseMode{fals… Scenario{:jacobian,:out} Diffusi… | ||
v ⋯ | ||
2 │ AutoEnzyme(mode=ReverseMode{fals… Scenario{:jacobian,:out} Diffusi… | ||
j | ||
3 │ AutoEnzyme(mode=ForwardMode{fals… Scenario{:jacobian,:out} Diffusi… | ||
v | ||
4 │ AutoEnzyme(mode=ForwardMode{fals… Scenario{:jacobian,:out} Diffusi… | ||
j | ||
5 │ AutoMooncake{Nothing}(nothing) Scenario{:jacobian,:out} Diffusi… | ||
v ⋯ | ||
6 │ AutoMooncake{Nothing}(nothing) Scenario{:jacobian,:out} Diffusi… | ||
j | ||
7 │ AutoForwardDiff() Scenario{:jacobian,:out} Diffusi… | ||
v | ||
8 │ AutoForwardDiff() Scenario{:jacobian,:out} Diffusi… | ||
j | ||
9 │ AutoSparse(dense_ad=AutoForwardD… Scenario{:jacobian,:out} Diffusi… | ||
v ⋯ | ||
10 │ AutoSparse(dense_ad=AutoForwardD… Scenario{:jacobian,:out} Diffusi… | ||
j | ||
11 │ AutoSparse(dense_ad=AutoEnzyme(m… Scenario{:jacobian,:out} Diffusi… | ||
v | ||
12 │ AutoSparse(dense_ad=AutoEnzyme(m… Scenario{:jacobian,:out} Diffusi… | ||
j | ||
10 columns om | ||
itted | ||
``` | ||
|
||
|
Binary file modified
BIN
+287 Bytes
(100%)
markdown/AutomaticDifferentiationSparse/figures/BrusselatorSparseAD_10_1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified
BIN
-380 Bytes
(99%)
markdown/AutomaticDifferentiationSparse/figures/BrusselatorSparseAD_11_1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified
BIN
-120 Bytes
(100%)
markdown/AutomaticDifferentiationSparse/figures/BrusselatorSparseAD_8_1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified
BIN
-288 Bytes
(99%)
markdown/AutomaticDifferentiationSparse/figures/BrusselatorSparseAD_9_1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
63 changes: 63 additions & 0 deletions
63
script/AutomaticDifferentiationSparse/ManualLoopDissusionSparseAD.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
|
||
using DifferentiationInterface | ||
using DifferentiationInterfaceTest | ||
using LinearAlgebra | ||
using SparseConnectivityTracer: TracerSparsityDetector | ||
using SparseMatrixColorings | ||
import Enzyme,ForwardDiff,Mooncake | ||
|
||
|
||
bcks = [ | ||
AutoEnzyme(mode=Enzyme.Reverse), | ||
AutoEnzyme(mode=Enzyme.Forward), | ||
AutoMooncake(config=nothing), | ||
AutoForwardDiff(), | ||
AutoSparse( | ||
AutoForwardDiff(); | ||
sparsity_detector=TracerSparsityDetector(), | ||
coloring_algorithm=GreedyColoringAlgorithm() | ||
), | ||
AutoSparse( | ||
AutoEnzyme(mode=Enzyme.Forward); | ||
sparsity_detector=TracerSparsityDetector(), | ||
coloring_algorithm=GreedyColoringAlgorithm() | ||
) | ||
] | ||
|
||
|
||
uin() = 0.0 | ||
uout() = 0.0 | ||
function Diffusion(u) | ||
du = zero(u) | ||
for i in eachindex(du,u) | ||
if i == 1 | ||
ug = uin() | ||
ud = u[i+1] | ||
elseif i == length(u) | ||
ug = u[i-1] | ||
ud = uout() | ||
else | ||
ug = u[i-1] | ||
ud = u[i+1] | ||
end | ||
du[i] = ug + ud -2*u[i] | ||
end | ||
return du | ||
end; | ||
|
||
|
||
function DDiffusion(u) | ||
A = diagm( | ||
-1 => ones(length(u)-1), | ||
0=>-2 .*ones(length(u)), | ||
1 => ones(length(u)-1)) | ||
return A | ||
end; | ||
|
||
|
||
u = rand(1000) | ||
scenarios = [ Scenario{:jacobian,:out}(Diffusion,u,res1=DDiffusion(u))]; | ||
|
||
|
||
df = benchmark_differentiation(bcks, scenarios) | ||
|