- Table of Contents
- What Is json_dto?
- What's new?
- Obtain and build
- How to use it?
- License
Created by gh-md-toc
json_dto library is a small header-only helper for converting data between json representation and c++ structs. DTO here stands for data transfer object. It was made and used as a part of a larger project inside StiffStream. And since Fall 2016 is ready for public. We are still using it for working with JSON in various projects.
Several new to_json
, from_json
, to_stream
and from_stream
functions
that accept Reader-Writer parameter. For example:
// Type to be serialized.
class some_data {
public:
...
template<typename Io> void json_io(Io & io) {...}
};
// Special Reader-Writer for packing/unpacking instances of some_data.
struct some_data_reader_writer {
void read( some_data & obj, const rapidjson::Value & from ) const {...}
void write( const some_data & obj, rapidjson::Value & to, rapidjson::MemoryPoolAllocator<> & allocator ) const {...}
};
...
// Object to be serialized.
some_data data_to_pack{...};
// Serialization by using custom Reader-Writer object.
auto json_string = json_dto::to_json(some_data_reader_writer{}, data_to_pack);
See a new deserialization example that shows how
a new from_json
function can be used.
There is also a new example that shows how a custom Reader-Writer may change representation of an item.
Support for storing of several fields into an array added.
It's a bug-fix release.
Support for std::int8_t
and std::uint8_t
added to json-dto.
Version 0.3.0 introduces a couple of breaking changes that can affect some users.
Previous versions of json-dto called set_attr_null_value
function when 'null'
value was found during deserialization. There were two overloads for
set_attr_null_value
: one for nullable_t<T>
and another for all other cases.
The overload for nullable_t<T>
reset the nullable field. The overload for all
other cases threw an exception.
It's important to note that the manopt_policy trait wasn't used for handling 'null' values.
Since v.0.3.0 an updated approach of dealing with 'null' values is used. Now
the manopt_policy is used when 'null' is found during deserialization:
on_null
method from manopt_policy is now called when 'null' is found.
Function templates set_attr_null_value
were removed. They were replaced by
new function templates default_on_null
that have the same logic (but under
the new names).
This change means that if you have your own implementation of manopt_policy
then you have to add the on_null
template method to it. For example:
struct my_manopt_policy
{
template<typename Field_Type>
void on_field_not_defined(Field_Type &) const { ... }
template<typename Field_Type>
bool
is_default_value(Field_Type &) const { ... }
template<typename Field_Type>
void on_null(Field_Type & f) const
{
json_dto::default_on_null(f);
}
}
Also it means that if you have your own specialization for
binder_read_from_implementation_t
class template then you have to replace a
call to set_attr_null_value
by a call to manopt_policy's on_null
method
(see the description of binder_read_from_implementation_t
for more info).
A new binder function mandatory_with_null_as_default
introduced. It allows
binding a mandatory attribute that allows 'null' value in JSON. If 'null' is
found during deserialization then a field of type T
will receive T{}
as a
value (it means that T
has to be DefaultConstructible). For example:
struct my_data
{
int type_{-1};
std::vector<std::string> headers_;
...
template<typename Json_Io>
void json_io(Json_Io & io)
{
io
// In case of 'null' type_ will receive 0 (because int{} produces 0).
& json_dto::mandatory_with_null_as_default( "type", type_ )
// In case of 'null' headers_ will be empty
// (because std::vector<std::string>{} produces empty vector).
& json_dto::mandatory_with_null_as_default( "headers", headers_ )
...
;
}
};
A new overload to_strean
added that receives an instance of pretty_writer_params_t
with parameters for RapidJSON's PrettyWriter:
std::ofstream target_file{...};
my_data my_obj;
...
// Make default serialization, without pretty-writer:
json_dto::to_strean(target_file, my_obj);
// Make serialization with pretty-writer:
json_dto::to_stream(target_file, my_obj,
json_dto::pretty_writer_params_t{}
.indent_char(' ')
.indent_char_count(3u)
.format_options(rapidjson::kFormatSingleLineArray));
A new overload to_json
added that receives an instance of pretty_writer_params_t
with parameters for RapidJSON's PrettyWriter:
my_data my_obj;
...
// Make default serialization, without pretty-writer:
std::string my_obj_image = json_dto::to_json(my_obj);
// Make serialization with pretty-writer:
std::string my_obj_pretty_image = json_dto::to_json(my_obj,
json_dto::pretty_writer_params_t{}
.indent_char(' ')
.indent_char_count(3u)
.format_options(rapidjson::kFormatSingleLineArray));
Functions mandatory
, optional
, optional_no_default
, and optional_null
now accepts const- and rvalue references. That can be useful for types that have to be only serializable. For example:
struct demo {
const int priority_;
std::vector<int> version() const { return { 1, 2, 3 }; }
const std::string payload_;
demo(int priority, std::string payload)
: priority_{priority}, payload_{std::move(payload)}
{}
template<typename Json_Io>
void json_io(Json_Io & io) {
io & json_dto::mandatory("priority", priority_)
& json_dto::mandatory("version", version())
& json_dto::mandatory("payload", payload_)
;
}
};
Please note that this code will lead to a compilation error in an attempt to deserialize an instance of demo
type.
The class template json_dto::binder_t
was refactored and now it uses several new customization points in the implementation: binder_data_holder_t
, binder_read_from_implementation_t
and binder_write_to_implementation_t
. Those customization points allow to add a new functionality without modifying the json-dto source code.
For example, a user now can do something like:
namespace tricky_stuff {
template<typename F> struct serialize_only_proxy {...};
template<typename F> serialize_only_proxy<F> serialize_only(const F & f) {...}
template<typename F> struct deserialize_only_proxy {...};
template<typename F> deserialize_only_proxy<F> deserialize_only(F & f) {...}
} // namespace tricky_stuff
namespace json_dto {
... // Several partial specializations of binder_data_holder_t,
// binder_read_from_implementation_t and binder_write_to_implementation_t
// for tricky_stuff::serialize_only_proxy and tricky_stuff::deserialize_only_proxy.
} // namespace json_dto
struct demo {
const int priority_;
std::vector<int> version() const { return { 1, 2, 3 }; }
const std::string payload_;
std::vector<std::string> obsolete_properties_;
demo(int priority, std::string payload)
: priority_{priority}, payload_{std::move(payload)}
{}
template<typename Json_Io>
void json_io(Json_Io & io) {
io & json_dto::mandatory("priority",
tricky_stuff::serialize_only(priority_))
& json_dto::mandatory("version",
tricky_stuff::serialize_only(version()))
& json_dto::mandatory("payload", payload_)
& json_dto::optional_no_default("properties",
tricky_stuff::deserialize_only(obsolete_properties_)
;
}
};
Several examples of how stuff like that can be implemented are shown in json_dto's samples
folder: serialize_only implementation, deserialize_only implementation, ignore_after_deserialization implementation.
Such functions like serialize_only
and deserialize_only
can be useful in data-transformation code. For example, when we have to read some old data in JSON format, modify the data read and write it in a slightly different JSON.
New types mutable_map_key_t<T>
and const_map_key_t<T>
are now used for (de)serializing keys of map-like structures. See the description below.
A new Reader_Writer proxy apply_to_content_t
added to address an issue of using custom Reader_Writers to the content of containers, nullable_t
and std::optional
. See the description below.
Another way of custom read/write operations added. It's based on specifying an instance of some user-supplied Reader_Writer type in the description of a field. See Usage of Reader_Writer for more details.
For support of that feature new overloads of json_dto::mandatory
, json_dto::optional
, and json_dto::optional_no_default
have been added.
There is also a new json_dto::write_json_value
overload:
void write_json_value(
const rapidjson::Value::StringRefType & s,
rapidjson::Value & object,
rapidjson::MemoryPoolAllocator<> & allocator );
Please note that json_dto::string_ref_t
is just an alias for
rapidjson::Value::StringRefType
.
New overloads for from_json
function:
// Parses null-terminated string and returns a new object.
template<typename Type, unsigned Rapidjson_Parseflags = rapidjson::kParseDefaultFlags>
Type from_json( const char * json );
// Parses null-terminated string into alredy existed object.
template<typename Type, unsigned Rapidjson_Parseflags = rapidjson::kParseDefaultFlags>
void from_json( const char * json, Type & o );
// Parses a string-view and returns a new object.
// NOTE. string_ref_t is just an alias for RapidJSON's StringRefType.
template<typename Type, unsigned Rapidjson_Parseflags = rapidjson::kParseDefaultFlags>
Type from_json( const string_ref_t & json );
// Parses a string-view into alredy existed object.
template<typename Type, unsigned Rapidjson_Parseflags = rapidjson::kParseDefaultFlags>
void from_json( const string_ref_t & json, Type & o );
Versions with string_ref_t
arguments are intended to be used in cases where a part of existing buffer should be parsed. For example:
std::vector<char> pdu = extract_data();
// string_view from C++17 is used just for a demonstration.
string_view headers;
string_view payload;
std::tie(headers, payload) = split_pdu_to_headers_and_payload(&pdu.front(), pdu.size());
auto parsed_payload = json_dto::from_json<PayloadType>(
json_dto::make_string_ref(payload.data(), payload.size());
Versions with const char *
are added to resolve ambious overloads with
from_string(const std::string &)
and from_string(const string_ref_t &)
in the following cases:
auto payload = json_dto::from_json<PayloadType>(R"JSON({"id":10})JSON");
Please note that string_ref_t
is not std::string_view
. string_ref_t
is just an alias for RapidJSON's StringRefType
. And type StringRefType
has a constructor is the form:
StringRefType(const char * ch, SizeType length);
But RapidJSON's SizeType
is not std::size_t
. So if someone writes:
std::vector<char> payload{...};
auto data = json_dto::from_json<PayloadType>(
json_dto::string_ref_t{&payload.front(), payload.size()} );
there could be a warning from the compiler about narrowing of std::size_t
to SizeType
.
A set on make_string_ref
functions is added to json_dto to avoid such warnings:
string_ref_t make_string_ref(const char * v);
string_ref_t make_string_ref(const char * v, std::size_t length);
string_ref_t make_string_ref(const std::string & v);
Use those functions to avoid warnings from the compiler:
std::vector<char> payload{...};
auto data = json_dto::from_json<PayloadType>(
json_dto::make_string_ref(&payload.front(), payload.size()) );
Support for STL containers like std::deque
, std::list
, std::forward_list
,
std::set
, std::unordered_set
, std::map
and std::unordered_map
is implemented.
These types can be used as types of fields in a serialized type, for example:
#include <json_dto/pub.hpp>
#include <deque>
#include <set>
#include <map>
struct my_message {
std::deque<int> ids_;
std::set<std::string> tags_;
std::map<std::string, some_another_type> props_;
...
template<typename Json_Io>
void json_io(Json_Io & io) {
io & json_dto::mandatory("ids", ids_)
& json_dto::mandatory("tags", tags_)
& json_dto::mandatory("properties", props_)
...
;
}
};
These types can also be used with json_dto::from_json()
and json_dto::to_json()
functions:
auto messages = json_dto::from_json< std::forward_list<my_message> >(...);
...
auto json = json_dto::to_json(messages);
A new example tutorial17 added. This example shows the usage of new features.
An important note about support for std::multiset
, std::unordered_multiset
,
std::multimap
and std::unordered_multimap
: those containers are also supported.
But json_dto doesn't do any checks for duplicate keys. In that aspect, json_dto relies
on RapidJSON behavior. For example, if an instance of std::multimap
contains several
values for some key all those values will be serialized.
What happens to those values is dependent on RapidJSON.
Two new forms of from_json
added. It is possible now to deserialize a DTO from already parsed document. For example:
struct update_period {
...
template<typename Json_Io> void json_io(Json_Io & io) {...}
};
struct read_sensor {
...
template<typename Json_Io> void json_io(Json_Io & io) {...}
};
...
void parse_and_handle_message( const std::string & raw_msg )
{
rapidjson::Document whole_msg;
whole_msg.Parse< rapidjson::kParseDefaultFlags >( raw_msg );
if( whole_msg.HasParseError() )
throw std::runtime_error(
std::string{ "unable to parse message: " } +
rapidjson::GetParseError_En( whole_msg.GetParseError() ) );
const std::string msg_type = whole_msg[ "message_type" ].GetString();
const auto & payload = whole_msg[ "payload" ];
if( "Update-Period" == msg_type )
{
auto dto = json_dto::from_json< update_period >( payload );
...
}
else if( "Read-Sensor" == msg_type )
{
auto dto = json_dto::from_json< read_sensor >( payload );
...
}
else
...
}
Fix: compilation problems on FreeBSD 12 with clang-6.0.1.
Fix: add check for reading fields of DTO to ensure that a source JSON value is of type Object.
Improve std::optional
availability check.
Support for std::vector
for json_dto::to_json
and json_dto::from_json
functions.
Modify cmake-scripts for vcpkg port (target name json-dto::json-dto
).
Add cmake support.
Make string value setter independent to RAPIDJSON_HAS_STDSTRING
.
Bug fix in support of std::vector<bool>
.
Bug fix in implementation of std::optional
support.
New example tutorial6.1 added.
Some code style changes to meet expectations of some users.
New format of read_json_value
function. NOTE: this is a breaking change!
Support for std::optional
(and std::experimental::optional
) added. Note: this
may require to specify C++17 standard in compiler params (like /std:c++17
for MSVC or
-std=c++17
for GCC).
To use json_dto it is necessary to have:
- C++14 compiler (VC++15.0, GCC 5.4 or above, clang 4.0 or above)
- rapidjson
And for building with mxxru:
- rapidjson_mxxru (v.1.0.0 or above)
- Mxx_ru 1.6.13 or above
And for running test:
- CATCH2 2.5.0 or above
Assuming that Git and Mxx_ru are already installed.
git clone https://github.com/Stiffstream/json_dto.git
And then:
cd json_dto-0.2
mxxruexternals
to download and extract json_dto's dependencies.
For json_dto itself:
MxxRu::arch_externals :json_dto do |e|
e.url 'https://github.com/Stiffstream/json_dto/archive/v.0.2.8.1.tar.gz'
e.map_dir 'dev/json_dto' => 'dev'
end
For rapidjson and rapidjson_mxxru dependencies:
MxxRu::arch_externals :rapidjson do |e|
e.url 'https://github.com/miloyip/rapidjson/archive/v1.1.0.zip'
e.map_dir 'include/rapidjson' => 'dev/rapidjson/include'
end
MxxRu::arch_externals :rapidjson_mxxru do |e|
e.url 'https://github.com/Stiffstream/rapidjson_mxxru/archive/v.1.0.1.tar.gz'
e.map_dir 'dev/rapidjson_mxxru' => 'dev'
end
While json_dto is header-only library test and samples require a build.
Compiling with Mxx_ru:
git clone https://github.com/Stiffstream/json_dto
cd json_dto
mxxruexternals
cd dev
ruby build.rb
NOTE. It might be necessary to set up MXX_RU_CPP_TOOLSET
environment variable,
see Mxx_ru documentation for further details.
An important notice: if you do not use Mxx_ru for building your project then add the following defines for your project:
RAPIDJSON_HAS_STDSTRING
RAPIDJSON_HAS_CXX11_RVALUE_REFS
If you use Mxx_ru and rapidjson_mxxru/prj.rb
then these definitions will be
added automatically.
To start using json_dto simply include <json_dto/pub.hpp>
header.
The usage principle of json_dto is borrowed from Boost serialization where rapidjson::Value plays the role of archive.
Let's assume we have a c++ structure that must be serialized to JSON and deserialized from JSON:
struct message_t
{
std::string m_from;
std::int64_t m_when;
std::string m_text;
};
For integrating this struct with json_dto facilities the struct must be modified as follows:
struct message_t
{
std::string m_from;
std::int64_t m_when;
std::string m_text;
// Entry point for json_dto.
template<typename Json_Io>
void json_io(Json_Io & io)
{
io & json_dto::mandatory("from", m_from)
& json_dto::mandatory("when", m_when)
& json_dto::mandatory("text", m_text);
}
};
Here json_io()
function is an entry point for json_dto library.
It describes how to read the data from rapidjson::Value
(that is usualy parsed from string) and how to set the data
in rapidjson::Value.
json_io()
is a template function. It allows to have a single
description for read and write operations.
The template is instantiated with Json_Io=json_dto::json_input_t
for reading dto from JSON-value and Json_Io=json_dto::json_output_t
for writing
dto to JSON-value. Both json_dto::json_input_t
and json_dto::json_output_t
override operator&
for splitting io functionality.
There are also iostream-like overrides for operator<<
and operator>>
:
template<typename Dto>
json_input_t &
operator>>(json_input_t & i, Dto & v);
template<typename Dto>
inline json_output_t &
operator<<(json_output_t & o, const Dto & v);
But they are only helpful for top level read/write operations.
In general json_dto gets data from rapidjson::Value
and puts
the data into rapidjson::Value
. So read/write operations look like this:
// Read
rapidjson::Document document;
// ...
json_dto::json_input_t jin{ document };
message_t msg;
jin >> msg;
// If no exceptions were thrown DTO contains data received from JSON.
// Write
rapidjson::Document document;
// ...
json_dto::json_output_t jout{ document, document.GetAllocator() };
const message_t msg = get_message();
jout << msg;
// If no exceptions were thrown document contains data received from DTO.
But usually it is enough to work with std::string
objects, so json_dto
comes with handy to/from string helpers:
template<typename Dto>
std::string
to_json(const Dto & dto);
template<typename Type>
Type
from_json(const std::string & json);
See full example without to/from string helpers.
When it is unwanted to add an extra function to C++ structure
it is possible to use a non intrusive json_io()
version.
In previous example dto part will look like this:
struct message_t
{
std::string m_from;
std::int64_t m_when;
std::string m_text;
};
namespace json_dto
{
template<typename Json_Io>
void json_io(Json_Io & io, message_t & msg)
{
io & json_dto::mandatory("from", msg.m_from)
& json_dto::mandatory("when", msg.m_when)
& json_dto::mandatory("text", msg.m_text);
}
} /* namespace json_dto */
Note that it is necessary to define json_io()
in namespace json_dto
.
Out of the box json_dto lib supports following types:
- Bool: bool;
- Numeric: std::int8_t, std::uint8_t, std::int16_t, std::uint16_t, std::int32_t, std::uint32_t, std::int64_t, std::uint64_t, double;
- Strings: std::string
- C++17 specific: std::optional (or std::experimental::optional)
Example:
struct supported_types_t
{
bool m_bool{ false };
std::int8_t m_int8{};
std::uint8_t m_uint8{};
std::int16_t m_int16{};
std::uint16_t m_uint16{};
std::int32_t m_int32{};
std::uint32_t m_uint32{};
std::int64_t m_int64{};
std::uint64_t m_uint64{};
double m_double{};
std::string m_string{};
};
namespace json_dto
{
template<typename Json_Io>
void json_io(Json_Io & io, supported_types_t & obj)
{
io & json_dto::mandatory("bool", obj.m_bool)
& json_dto::mandatory("int8", obj.m_int8)
& json_dto::mandatory("uint8", obj.m_uint8)
& json_dto::mandatory("int16", obj.m_int16)
& json_dto::mandatory("uint16", obj.m_uint16)
& json_dto::mandatory("int32", obj.m_int32)
& json_dto::mandatory("uint32", obj.m_uint32)
& json_dto::mandatory("int64", obj.m_int64)
& json_dto::mandatory("uint64", obj.m_uint64)
& json_dto::mandatory("double", obj.m_double)
& json_dto::mandatory("string", obj.m_string);
}
} /* namespace json_dto */
Each data member (at least those of them which are considered to be present in JSON) in C++ struct binds to JSON field. Bind can be mandatory or optional. Optional bind is extended with default value, but it is also possible to set optional fields without defaults. Also it is possible to add a value validator to the bind.
Binds are created by mandatory()
, optional()
and
optional_no_default()
functions. These functions returns a field binder.
Binder is an instantiation of binder_t
template class
which carries a part of internal logic
capable for handling field input/output operations.
With the help of binders Json_Io
object understands how read, write and validate
the underlying field.
Binders for mandatory fields are created via mandatory()
function:
template<
typename Field_Type,
typename Validator = empty_validator_t>
auto mandatory(
string_ref_t field_name,
Field_Type & field,
Validator validator = Validator{});
// Since v.0.2.10
template<
typename Reader_Writer,
typename Field_Type,
typename Validator = empty_validator_t>
auto mandatory(
Reader_Writer reader_writer,
string_ref_t field_name,
Field_Type & field,
Validator validator = Validator{});
The parameter field_name is of type string_ref_t
which is an alias for rapidjson::Value::StringRefType
.
Typically it is enough to pass std::string
or char *
args
(see rapidjson
documentation
for further details).
The parameter field is a reference to the instance of the field value.
The parameter validator is optional and it sets validator on fields value.
Validators will be described later. By default empty_validator_t
is used, and as it says it does nothing.
Binders for optional fields are created via optional()
and
optional_no_default()
functions:
template<
typename Field_Type,
typename Field_Default_Value_Type,
typename Validator = empty_validator_t>
auto optional(
string_ref_t field_name,
Field_Type & field,
Field_Default_Value_Type default_value,
Validator validator = Validator{});
template<
typename Field_Type,
typename Validator = empty_validator_t>
auto optional_no_default(
string_ref_t field_name,
Field_Type & field,
Validator validator = Validator{});
// Since v.0.2.10
template<
typename Reader_Writer,
typename Field_Type,
typename Field_Default_Value_Type,
typename Validator = empty_validator_t>
auto optional(
Reader_Writer reader_writer,
string_ref_t field_name,
Field_Type & field,
Field_Default_Value_Type default_value,
Validator validator = Validator{});
// Since v.0.2.10
template<
typename Reader_Writer,
typename Field_Type,
typename Validator = empty_validator_t>
auto optional_no_default(
Reader_Writer reader_writer,
string_ref_t field_name,
Field_Type & field,
Validator validator = Validator{});
Parameters for functions are pretty much the same as for
mandatory()
functon.
The only difference is the third parameter for optional()
function,
it defines default value for a field if it is not defined in JSON.
In case of reading DTO, if optional field has default value and JSON object doesn't define this field then default value is used. In case of writing DTO, if value equals to default then this field wouldn't be included in JSON.
For optional()
there is a partial specification that accepts
nullptr
argument as default_value parameter, it is usefull for
nullable_t<T>
fields.
Example of using optional fields:
struct message_t
{
std::string m_from;
std::int64_t m_when;
std::string m_text;
std::string m_text_format;
bool m_is_private{ false };
};
namespace json_dto
{
template<typename Json_Io>
void json_io(Json_Io & io, message_t & msg)
{
io & json_dto::mandatory("from", msg.m_from)
& json_dto::mandatory("when", msg.m_when)
& json_dto::mandatory("text", msg.m_text)
& json_dto::optional("text_format", msg.m_text_format, "text/plain")
& json_dto::optional_no_default("is_private", msg.m_is_private);
}
} /* namespace json_dto */
Since v.0.2 it is possible to use C++17's std::optional
template as a type
for field. In this case std::nullopt
can be passed as third argument to
json_dto::optional()
function:
struct email_data_t
{
std::string m_from;
std::string m_to;
std::string m_subject;
std::optional<std::vector<std::string>> m_cc;
std::optional<std::vector<std::string>> m_bcc;
...
template<typename Json_Io>
void json_io(Json_Io & io)
{
io & json_dto::mandatory("from", m_from)
& json_dto::mandatory("to", m_to)
& json_dto::mandatory("subject", m_subject)
& json_dto::optional("cc", m_cc, std::nullopt)
& json_dto::optional("bcc", m_bcc, std::nullopt)
...
}
};
Note. If a compiler doesn't have std::optional
but have
std::experimental::optional
then std::experimental::optional
and
std::experimental::nullopt
can be used.
JSON arrays are supported by json_dto, but there is one very important
limitation: all elements of the array must have the same type.
To set up an array simply use std::vector<T>
.
If DTO member is of std::vector<T>
type,
then corresponding JSON field is considered to be an array.
While for output the elements of the array-field will be automatically
of the same type, for successful input it is mandatory
that all elements of the array are convertible to vector value type.
Example for array-fields:
struct vector_types_t
{
std::vector<bool> m_bool{};
std::vector<std::int8_t> m_int8{};
std::vector<std::uint8_t> m_uint8{};
std::vector<std::int16_t> m_int16{};
std::vector<std::uint16_t> m_uint16{};
std::vector<std::int32_t> m_int32{};
std::vector<std::uint32_t> m_uint32{};
std::vector<std::int64_t> m_int64{};
std::vector<std::uint64_t> m_uint64{};
std::vector<double> m_double{};
std::vector<std::string> m_string{};
};
namespace json_dto
{
template<typename Json_Io>
void json_io(Json_Io & io, vector_types_t & obj)
{
io & json_dto::mandatory("bool", obj.m_bool)
& json_dto::mandatory("int8", obj.m_int8)
& json_dto::mandatory("uint8", obj.m_uint8)
& json_dto::mandatory("int16", obj.m_int16)
& json_dto::mandatory("uint16", obj.m_uint16)
& json_dto::mandatory("int32", obj.m_int32)
& json_dto::mandatory("uint32", obj.m_uint32)
& json_dto::mandatory("int64", obj.m_int64)
& json_dto::mandatory("uint64", obj.m_uint64)
& json_dto::mandatory("double", obj.m_double)
& json_dto::mandatory("string", obj.m_string);
}
} /* namespace json_dto */
Since v.0.2.6 it is possible to serialize array of objects into JSON
by json_dto::to_json
function. It is also possible to deserialize
JSON with array of objects into std::vector
by json_dto::from_json
function. For example:
#include <json_dto/pub.hpp>
#include <iostream>
#include <algorithm>
struct data_t {
std::string m_key;
int m_value;
template<typename Json_Io>
void json_io(Json_Io & io) {
io & json_dto::mandatory("key", m_key)
& json_dto::mandatory("value", m_value);
}
};
int main() {
const std::string json_data{
R"JSON(
[{"key":"first", "value":32},
{"key":"second", "value":15},
{"key":"third", "value":80}]
)JSON"
};
auto data = json_dto::from_json< std::vector<data_t> >(json_data);
std::sort(data.begin(), data.end(),
[](const auto & a, const auto & b) { return a.m_value < b.m_value; });
std::cout << "Sorted data: " << json_dto::to_json(data) << std::endl;
}
Since v.0.2.8 there is a support for STL containers like std::deque
, std::list
,
std::forward_list
, std::set
, std::unordered_set
, std::map
and std::unordered_map
.
Those types can be used as types of fields of serialized struct/classes:
#include <json_dto/pub.hpp>
#include <deque>
#include <set>
#include <map>
struct my_message {
std::deque<int> ids_;
std::set<std::string> tags_;
std::map<std::string, some_another_type> props_;
...
template<typename Json_Io>
void json_io(Json_Io & io) {
io & json_dto::mandatory("ids", ids_)
& json_dto::mandatory("tags", tags_)
& json_dto::mandatory("properties", props_)
...
;
}
};
Also STL containers are supported by json_dto::from_json()
and json_dto::to_json()
functions:
auto messages = json_dto::from_json< std::forward_list<my_message> >(...);
...
auto json = json_dto::to_json(messages);
See a special example with usage of STL containers
Note that support for those STL-containers is not hardcoded in json_dto.
Instead, json_dto tries to detect a type of a container by inspecting the presence of types
like value_type
, key_type
, mapped_type
and methods like begin()/end()
, emplace()
,
emplace_back()
and so on. It means that json_dto may work not only with STL-containers but
with other containers those mimics like STL-containers.
Note. Type std::array
is not supported now. If you have to deal with std::array
and
want to have a support of it in json_dto please
open an issue
and we'll discuss some corner cases related to std::array
.
An important note about support for std::multiset
, std::unordered_multiset
,
std::multimap
and std::unordered_multimap
: those containers are also supported.
But json_dto doesn't do any checks for duplicate keys. In that aspect, json_dto relies
on RapidJSON behavior. For example, if an instance of std::multimap
contains several
values for some key all those values will be serialized.
What happens to those values is dependent on RapidJSON.
To support JSON null values, json_dto introduces nullable_t<T>
.
It is required that nullable field is explicitly defined as
data member of type nullable_t<T>
.
Interface of nullable_t<T>
tries to mimic std::optional
interface.
Example for nullable_t<T>
field:
struct message_t
{
message_t() {}
message_t(
std::string from,
std::int64_t when,
std::string text)
: m_from{ std::move(from) }
, m_when{ when }
, m_text{ std::move(text) }
{}
std::string m_from;
std::int64_t m_when;
std::string m_text;
// Log level.
// By default is constructed with null value.
json_dto::nullable_t<std::int32_t> m_log_level{};
};
namespace json_dto
{
template<typename Json_Io>
void json_io(Json_Io & io, message_t & msg)
{
io & json_dto::mandatory("from", msg.m_from)
& json_dto::mandatory("when", msg.m_when)
& json_dto::mandatory("text", msg.m_text)
& json_dto::optional("log_level", msg.m_log_level, nullptr);
}
} /* namespace json_dto */
void
some_function( ... )
{
// ...
auto msg = json_dto::from_json<message_t>(json_data);
// ...
// If field is defined then its value can be obtained and used.
if( msg.m_log_level )
use_value(*msg.m_log_level);
// ...
msg.m_log_level = 1; // Set new value.
// ...
// equivalent to msg.m_log_level.reset();
msg.m_log_level = nullptr; // Reset value.
// ...
}
Here default value for optional nullble field is nullptr
.
And it means that absence of value is a default state for a field.
So when converting to JSON no-value nullable field
wouldn't be included in JSON as "field":null
piece.
Nullable fields can be used with arrays:
struct message_t
{
message_t() {}
message_t(
std::string from,
std::int64_t when,
std::string text)
: m_from{ std::move(from) }
, m_when{ when }
, m_text{ std::move(text) }
{}
// Who sent a message.
std::string m_from;
// When the message was sent (unixtime).
std::int64_t m_when;
// Message text.
std::string m_text;
// Log level.
// By default is constructed with null value.
json_dto::nullable_t<std::int32_t> m_log_level{};
json_dto::nullable_t< std::vector<std::string> > m_tags{};
};
namespace json_dto
{
template<typename Json_Io>
void json_io(Json_Io & io, message_t & msg)
{
io & json_dto::mandatory("from", msg.m_from)
& json_dto::mandatory("when", msg.m_when)
& json_dto::mandatory("text", msg.m_text)
& json_dto::optional("log_level", msg.m_log_level, nullptr)
& json_dto::optional("tags", msg.m_tags, nullptr);
}
} /* namespace json_dto */
void some_function( ... )
{
// ...
auto msg = json_dto::from_json<message_t>(json_data);
// ...
if( msg.m_tags )
use_tags(*msg.m_tags);
// ...
}
void some_other_function( ... )
{
message_t msg{ ... };
// ...
// Add tags:
msg.m_tags.emplace(); // equivalent to msg = std::vector<std::string>{};
msg.m_tags->emplace_back("sample");
msg.m_tags->emplace_back("tutorial");
// ...
}
json_dto allows to construct complex types with nested objects. Using nested objects is pretty much the same as using data of a simple types. Nested objects can be optional, nullable and be elements of array-fields. However there are some constraints:
- nested type must be itself integrated with json_dto;
- type must be default-constructible (for input);
- for optional fields with default value equality operator must be defined (more precisely an equality operator between nested type and type of passed default value).
Suppose there is a type which is already integrated with json_dto:
struct message_source_t
{
std::int32_t m_thread_id{ 0 };
std::string m_subsystem{};
template<typename Json_Io>
void json_io(Json_Io & io)
{
io & json_dto::optional("thread_id", m_thread_id, 0)
& json_dto::mandatory("subsystem", m_subsystem);
}
};
Then it can be used as a nested object in other type:
struct message_t
{
message_source_t m_from;
std::int64_t m_when;
std::string m_text;
template<typename Json_Io>
void json_io(Json_Io & io)
{
io & json_dto::mandatory("from", m_from) // Exactly as with simple types.
& json_dto::mandatory("when", m_when)
& json_dto::mandatory("text", m_text);
}
};
And see full example using nested objects as nullable and arrays
json_dto works well with inheritance. It is possible to use
base implementation of json_io()
function or completely override it.
For example derived class can use base class like this:
struct derived_t : public base_t
{
//...
template<typename Json_Io>
void json_io(Json_Io & io)
{
base_t::json_io(io); // Run io on base class.
// Run io on extra data:
io & json_dto::mandatory("some_field", m_some_field)
// ...
;
}
};
However for easier maintenance it is recommended to use non intrusive
json_io()
function. Because if base class is integrated with json_dto
in non intrusive manner, then the following wouldn't work:
template<typename Json_Io>
void json_io(Json_Io & io)
{
// Base class doesn't provide such member function.
base_t::json_io(io); // Run io on base class.
// ...
}
So it is preferred to put inheritance this way:
struct message_source_t
{
std::int32_t m_thread_id{ 0 };
std::string m_subsystem{};
};
namespace json_dto
{
template<typename Json_Io>
void json_io(Json_Io & io, message_source_t & m)
{
io & json_dto::optional("thread_id", m.m_thread_id, 0)
& json_dto::mandatory("subsystem", m.m_subsystem);
}
} /* namespace json_dto */
struct message_t : public message_source_t
{
std::int64_t m_when;
std::string m_text;
template<typename Json_Io>
void json_io(Json_Io & io)
{
json_dto::json_io(io, static_cast<message_source_t &>(*this));
io & json_dto::mandatory("when", m_when)
& json_dto::mandatory("text", m_text);
}
};
json_dto allows to set validator on each field.
Validator is a function object (an object of a type supporting an
operator()
member function) that receives a single parameter.
When handling input json_dto calls specified validator
and passes resulting field value as an argument.
If validator returns without throwing exception,
then field value considered to be valid, and execution continues.
Otherwise exception is catched and another will be thrown:
json_dto::ex_t
. This exeption contains original exception description
supplemented with field name information.
When handling ouput json_dto calls specified validator before trying to assign field value of JSON object. In all other respects validation is the same as for input.
A simple example of using validators:
void check_all_7bit(
const std::string & text)
{
const auto it = std::find_if(std::begin(text), std::end(text),
[](char c){ return c & 0x80; });
if( std::end(text) != it )
{
throw std::runtime_error{
"non 7bit char at pos " +
std::to_string(std::distance(std::begin(text), it)) };
}
}
struct message_t
{
std::string m_from;
std::int64_t m_when;
// Message text. Must be 7bit ascii.
std::string m_text;
template<typename Json_Io>
void json_io(Json_Io & io)
{
io & json_dto::mandatory("from", m_from)
& json_dto::mandatory("when", m_when)
& json_dto::mandatory("text", m_text, check_all_7bit);
}
};
json_dto comes with some useful ready to use validators for simple types.
They are defined in <json_dto/pub.hpp>
header.
Standard validators curently available:
min_max_constraint_t<Num>
- range validator, targeted for numeric types;one_of_validator_t<T>
- validator for set of values.
Standard validators are template classes with overloaded operator()
.
And as they are template classes so for convenience
for each validator there is an auxiliary function that helps deduce
type of template instance from arguments:
template<typename Number>
auto min_max_constraint(Number min_value, Number max_value);
template<typename Field_Type>
auto one_of_constraint(std::initializer_list<Field_Type> values);
See full example with standard validators
Sometimes several values may be stored inside an array:
{ "x": [1, "Hello!", 0.3] }
Since v.0.3.3 json_dto support such cases the following way:
struct inner {
int a;
std::string b;
double c;
//NOTE: there is no json_io for `inner` type.
};
struct outer {
inner x;
template< typename Io > void json_io( Io & io ) {
io & json_dto::mandatory(
// The use of special reader-writer that will pack
// all described fields into one array value.
json_dto::inside_array::reader_writer(
// All fields to be (de)serialized must be enumerated here.
// The order of the enumeration is important: (de)serialization
// is performed in this order.
json_dto::inside_array::member( x.a ),
json_dto::inside_array::member( x.b ),
json_dto::inside_array::member( x.c ) ),
"x", x );
}
};
...
auto obj = json_dto::from_json<outer>( R"({"x":[1, "Hello!", 0.3]})" );
By default json_dto::inside_array::reader_writer
expects exact number of
fields. For example, if three fields are described then an array with exactly tree
values is expected during deserialization, otherwise an exception will be thrown.
However, there may be cases when JSON contains less values. It means that N
first members are mandatory, and all other are optional. This can be expressed
that way:
struct outer {
inner x;
template< typename Io > void json_io( Io & io ) {
io & json_dto::mandatory(
json_dto::inside_array::reader_writer<
// Specify that the first field is mandatory and all remaining
// are optional.
json_dto::inside_array::at_least<1>
>(
// This is mandatory field,
json_dto::inside_array::member( x.a ),
// This is optional field and we specify a default value for
// a case when it's missing.
json_dto::inside_array::member_with_default_value( x.b, std::string{ "Nothing" } ),
// This is optional field and we doesn't specify a default value
// for it. It it's missing than `double{}` will be used as a new
// value for `x.c`.
json_dto::inside_array::member( x.c ) ),
"x", x );
}
};
There are a family of json_dto::inside_array::member
and json_dto::inside_array::member_with_default_value
functions that allow to specify a custom reader-writer and/or a validator:
json_dto::inside_array::member( x.a, json_dto::min_max_constraint(-10, 10));
json_dtp::inside_array::member( my_custom_reader_writer{}, x.b );
json_dtp::inside_array::member( my_custom_reader_writer{}, x.c, json_dto::min_max_constraint(-1, 1) );
The inside_array functionality can be used for manual support of std::tuple
:
struct outer {
std::tuple<int, std::string, double> x;
template< typename Io > void json_io( Io & io ) {
io & json_dto::mandatory(
json_dto::inside_array::reader_writer(
json_dto::inside_array::member( std::get<0>(x) ),
json_dto::inside_array::member( std::get<1>(x) ),
json_dto::inside_array::member( std::get<2>(x) ) ),
"x", x );
}
};
...
auto obj = json_dto::from_json<outer>( R"({"x":[1, "Hello!", 0.3]})" );
It is possible to define custom IO logic for a specific type. It might be useful for types when using object is an overkill, for example time point that can be stored in format of 'YYYY.MM.DD hh:mm:ss' or some token composed of several small items like '--'. But introducing custom IO logic for some type requires to work with rapidjson API directly.
There are two way to introduce custom IO logic.
The first way uses C++'s Argument Dependent Lookup feature:
an user should define read_json_value
and write_json_value
in the same
namespace where types are defined. The right implementations of
read_json_value
and write_json_value
will be found by C++ compiler automatically.
For example:
namespace importance_levels
{
enum class level_t
{
low,
normal,
high
};
// read_json_value and write_json_value for level_t are
// defined in importance_levels namespace.
// They will be found by argument dependent lookup.
void read_json_value(
level_t & value,
const rapidjson::Value & from)
{...}
void write_json_value(
const level_t & value,
rapidjson::Value & object,
rapidjson::MemoryPoolAllocator<> & allocator)
{...}
} /* namespace importance_levels */
This approach also allows to define read_json_value
and write_json_value
for user's template type. For example:
namespace demo
{
template<typename T>
class some_template
{...}
template<typename T>
void read_json_value(
some_template<T> & value,
const rapidjson::Value & from)
{...}
template<typename T>
void write_json_value(
const some_template<T> & value,
rapidjson::Value & object,
rapidjson::MemoryPoolAllocator<> & allocator)
{...}
} /* namespace demo */
struct my_data_t
{
demo::some_template<int> m_first;
demo::some_template<double> m_second;
...
template<typename Json_Io>
void json_io(Json_Io & io)
{
io & json_dto::mandatory("first", m_first)
& json_dto::mandatory("second", m_second)
...
}
};
See full example with custom IO and ADL
The second way uses explicit template specialization for 2 functons
inside json_dto
namespace:
namespace json_dto
{
template<>
void read_json_value(
Custom_Type & v,
const rapidjson::Value & object)
{
// ...
}
template<>
void write_json_value(
const Custom_Type & v,
rapidjson::Value & object,
rapidjson::MemoryPoolAllocator<> & allocator)
{
// ...
}
} /* namespace json_dto */
json_dto will consider these specializations for using with
specified Custom_Type
. This way can be used when it is impossible
to place read_json_value
and write_json_value
into the namespace where
the type if defined (for example if it is standard type like std::filesystem::path
).
See full example with custom IO
Suppose we have an enumeration log_level
defined such way:
enum class log_level { low, normal, high };
And we have two structs that use that log_level
enumeration:
struct log_message
{
log_level level_;
std::string msg_;
};
struct log_config
{
std::string path_;
log_level level_;
};
Serialization of log_level
to JSON should use numeric values of log levels, e.g.: {"level":0, "msg":"..."}
, but the serialization of log_config
should use textual names instead of numeric values, e.g.: {"path":"/var/log/demo", "level":"low"}
.
Such a task can't be implemented by writing overloads of read_json_value
and write_json_value
functions. Custom Reader_Writers should be used in that case:
struct numeric_log_level
{
void read( log_level & v, const rapidjson::Value & from ) const
{
using json_dto::read_json_value;
int actual;
read_json_value( actual, from );
v = static_cast<log_level>(actual);
}
void write(
const log_level & v,
rapidjson::Value & to,
rapidjson::MemoryPoolAllocator<> & allocator ) const
{
using json_dto::write_json_value;
const int actual = static_cast<int>(v);
write_json_value( actual, to, allocator );
}
};
struct log_message
{
log_level level_;
std::string msg_;
template< typename Json_Io >
void json_io( Json_Io & io )
{
io & json_dto::mandatory( numeric_log_level{}, "level", level_ )
& json_dto::mandatory( "msg", msg_ );
}
};
struct textual_log_level
{
void read( log_level & v, const rapidjson::Value & from ) const
{
using json_dto::read_json_value;
std::string str_v;
read_json_value( str_v, from );
if( "low" == str_v ) v = log_level::low;
else if( "normal" == str_v ) v = log_level::normal;
else if( "high" == str_v ) v = log_level::high;
else throw json_dto::ex_t{ "invalid value for log_level" };
}
void write(
const log_level & v,
rapidjson::Value & to,
rapidjson::MemoryPoolAllocator<> & allocator ) const
{
using json_dto::write_json_value;
using json_dto::string_ref_t;
switch( v )
{
case log_level::low:
write_json_value( string_ref_t{ "low" }, to, allocator );
break;
case log_level::normal:
write_json_value( string_ref_t{ "normal" }, to, allocator );
break;
case log_level::high:
write_json_value( string_ref_t{ "high" }, to, allocator );
break;
}
}
};
struct log_config
{
std::string path_;
log_level level_;
template< typename Json_Io >
void json_io( Json_Io & io )
{
io & json_dto::mandatory( "path", path_ )
& json_dto::mandatory( textual_log_level{}, "level", level_ );
}
};
Note that Reader_Writer class should have two const methods read
and write
those signatures are the same with the signatures of read_json_value
and write_json_value
functions.
See full example with Reader_Writer
Custom Reader_Writer classes can also be used for handling non-standard representation of some values in JSON document. For example, sometimes string-values like "NAN"
or "nan"
are used for NaN (Not-a-Number) values. RapidJSON can only parsed special value NaN
, but not "NAN"
nor "nan"
values. In such case a custom Reader_Writer like the following one can be used:
struct custom_floating_point_reader_writer
{
template< typename T >
void read( T & v, const rapidjson::Value & from ) const
{
if( from.IsNumber() )
{
json_dto::read_json_value( v, from );
return;
}
else if( from.IsString() )
{
const json_dto::string_ref_t str_v{ from.GetString() };
if( equal_caseless( str_v, "nan" ) )
{
v = std::numeric_limits<T>::quiet_NaN();
return;
}
else if( equal_caseless( str_v, "inf" ) )
{
v = std::numeric_limits<T>::infinity();
return;
}
else if( equal_caseless( str_v, "-inf" ) )
{
v = -std::numeric_limits<T>::infinity();
return;
}
}
throw json_dto::ex_t{ "unable to parse value" };
}
template< typename T >
void write(
T & v,
rapidjson::Value & to,
rapidjson::MemoryPoolAllocator<> & allocator ) const
{
using json_dto::write_json_value;
using json_dto::string_ref_t;
if( std::isnan(v) )
write_json_value( string_ref_t{"nan"}, to, allocator );
else if( v > std::numeric_limits<T>::max() )
write_json_value( string_ref_t{"inf"}, to, allocator );
else if( v < std::numeric_limits<T>::min() )
write_json_value( string_ref_t{"-inf"}, to, allocator );
else
write_json_value( v, to, allocator );
}
};
struct struct_with_floats_t
{
float m_num_float;
double m_num_double;
template< typename Json_Io >
void
json_io( Json_Io & io )
{
io
& optional( custom_floating_point_reader_writer{},
"num_float", m_num_float, 0.0f )
& optional( custom_floating_point_reader_writer{},
"num_double", m_num_double, 0.0 );
}
};
Note also that read
and write
methods of Reader_Writer class can be template methods.
A custom Reader_Writer can also be used to change representation of a field. For example, let suppose that we have a std::vector<some_struct>
field, but this field has to be represented as a single object if it holds just one value, and as an array otherwise. Something like:
{
"message": {
"from": "address-1",
"to": "address-2",
...,
"extension": {...}
},
...
}
if we have only one extension in a message or:
{
"message": {
"from": "address-1",
"to": "address-2",
...,
"extension": [
{...},
{...},
...
]
},
...
}
if there are several extensions.
A solution with a custom Reader_Writer can looks like:
struct extension
{
...
template< typename Json_Io >
void json_io( Json_Io & io )
{
... // Ordinary serialization/deserialization code.
}
};
// Reader_Writer for vector of `extension` objects.
struct extension_reader_writer
{
void read( std::vector< extension > & to, const rapidjson::Value & from ) const
{
using json_dto::read_json_value;
to.clear();
if( from.IsObject() )
{
extension_t single_value;
read_json_value( single_value, from );
to.push_back( std::move(single_value) );
}
else if( from.IsArray() )
{
read_json_value( to, from );
}
else
{
throw std::runtime_error{ "Unexpected format of extension value" };
}
}
void write(
const std::vector< extension > & v,
rapidjson::Value & to,
rapidjson::MemoryPoolAllocator<> & allocator ) const
{
using json_dto::write_json_value;
if( 1u == v.size() )
write_json_value( v.front(), to, allocator );
else
write_json_value( v, to, allocator );
}
};
// Message.
struct message
{
// Fields of a message.
...
// Extension(s) for a message.
std::vector< extension > m_extension;
template< typename Json_Io >
void json_io( Json_Io & io )
{
io & ...
& json_dto::mandatory( extension_reader_writer{},
"extension", m_extension )
;
}
};
The full example of such an approach can be seen here
If a custom Reader_Writer is used then a reference to the whole field is passed to Reader_Writer's methods. For example:
struct my_int_reader_writer
{
void read(int & v, ...) const {...} // Custom read procedure for an int.
void write(const int & v, ...) const {...} // Custom write procedure for int.
};
...
struct my_data
{
int field_;
...
template<typename Io> void json_io(Io & io)
{
io & json_dto::mandatory(my_int_reader_writer{},
"field", field_)
...
;
}
};
In that case a reference to an int
will be passed to my_int_reader_writer
's read
and write
methods.
In the case when my_data
isn't int
but a std::vector<int>
then a reference to std::vector<int>
instance will be passed to read
/write
. And there will be a compiler error because read
/write
expects a reference to an int
.
If we want our custom Reader_Writer to be applied for every member of a container then json_dto::apply_to_content_t
proxy should be used as Reader_Writer type:
struct my_complex_data
{
std::vector<int> field_;
...
template<typename Io> void json_io(Io & io)
{
io & json_dto::mandatory(
json_dto::apply_to_content_t<my_int_reader_writer>{},
"field", field_)
...
;
}
};
The apply_to_content_t
proxy works very simple way: it holds an instance of an actual Reader_Writer and applies that actual Reader_Writer to every member of a container (or to the content of json_dto::nullable_t
and std::optional
, see bellow).
The same rule is applied to nullable_t
and std::optional
:
struct my_data
{
std::optional<int> field_;
...
template<typename Io> void json_io(Io & io)
{
io & json_dto::optional(my_int_reader_writer{},
"field", field_, std::nullopt)
...
;
}
};
Such code leads to compiler error because my_int_reader_writer
's read
and write
methods expect a reference to int
, not to std::optional<int>
. So we have to use apply_to_content_t
here too:
struct my_data
{
std::optional<int> field_;
...
template<typename Io> void json_io(Io & io)
{
io & json_dto::optional(
// Now my_int_reader_writer will be applied to the content
// of std::optional<int>, not to std::optional<int> itself.
json_dto::apply_to_content_t<my_int_reader_writer>{},
"field", field_, std::nullopt)
...
;
}
};
Note that apply_to_content_t
can be nested:
struct my_complex_data {
json_dto::nullable_t< std::vector<int> > params_;
...
template<typename Io> void json_io(Io & io) {
io & json_dto::mandatory(
// The first occurence of apply_to_content_t is for nullable_t.
json_dto::apply_to_content_t<
// The second occurence of apply_to_content_t is for std::vector.
json_dto::apply_to_content_t<
// This is for the content of std::vector.
my_int_reader_writer
>
>{},
"params", params_)
...
;
}
};
Since v.0.2.11 json_dto (de)serializes keys of map-like containers (std::map
, std::multimap
, std::unordered_map
and so on) by using new proxy types const_map_key_t
and mutable_map_key_t
.
A new type const_map_key_t<T>
is used for serializing a key of type T.
A new type mutable_map_key_t<T>
is used for deserializing a key of type T.
It means that if someone wants to make overloads of read_json_value
and write_json_value
for types that are used as keys in map-like structures, then such overloads should be placed into json_dto
namespace and should have the following prototypes:
namespace json_dto {
void read_json_value(
mutable_map_key_t<UserType> key,
const rapidjson::Value & from);
void write_json_value(
const_map_key_t<UserType> key,
rapidjson::Value & to,
rapidjson::MemoryPoolAllocator<> & allocator);
} /* namespace json_dto */
See full example with overloading of read/write_json_value for mutable/const_map_key_t
The addition of mutable_map_key_t
/const_map_key_t
in the v.0.2.11 means that custom Reader_Writers should take the presence of those types into the account.
For example, if a custom Reader_Writer is used for (de)serializing a content of std::map
then that Reader_Writer should have implementations of read
/write
methods for keys and values from the map:
struct my_kv_formatter
{
// Read a key.
void read(
json_dto::mutable_map_key_t<KeyType> & key,
const rapidjson::Value & from) const {...}
// Read a value.
void read(
ValueType & value,
const rapidjson::Value & from) const {...}
// Write a key.
void write(
const json_dto::const_map_key_t<KeyType> & key,
rapidjson::Value & to,
rapidjson::MemoryPoolAllocator<> & allocator) const {...}
// Write a value.
void write(
const ValueType & value,
rapidjson::Value & to,
rapidjson::MemoryPoolAllocator<> & allocator) const {...}
};
Please note that a references to instances of mutable_map_key_t
/const_map_key_t
are passed to read
/write
methods.
See full example with overloading of Reader_Writer for mutable/const_map_key_t
json_dto is distributed under BSD-3-Clause license. See LICENSE file for more information.
For the license of rapidson library see LICENSE file in rapidson distributive.
For the license of rapidson_mxxru library see LICENSE file in rapidson_mxxru distributive.
For the license of CATCH library see LICENSE file in CATCH distributive.