@@ -162,6 +162,11 @@ m ≟ n = map′ (≡ᵇ⇒≡ m n) (≡⇒≡ᵇ m n) (T? (m ≡ᵇ n))
162162-- Properties of _≤_
163163------------------------------------------------------------------------
164164
165+ ≰⇒≥ : _≰_ ⇒ _≥_
166+ ≰⇒≥ {m} {zero} m≰n = z≤n
167+ ≰⇒≥ {zero} {suc n} m≰n = contradiction z≤n m≰n
168+ ≰⇒≥ {suc m} {suc n} m≰n = s≤s (≰⇒≥ (m≰n ∘ s≤s))
169+
165170------------------------------------------------------------------------
166171-- Relational properties of _≤_
167172
@@ -180,11 +185,6 @@ m ≟ n = map′ (≡ᵇ⇒≡ m n) (≡⇒≡ᵇ m n) (T? (m ≡ᵇ n))
180185≤-trans z≤n _ = z≤n
181186≤-trans (s≤s m≤n) (s≤s n≤o) = s≤s (≤-trans m≤n n≤o)
182187
183- ≤-total : Total _≤_
184- ≤-total zero _ = inj₁ z≤n
185- ≤-total _ zero = inj₂ z≤n
186- ≤-total (suc m) (suc n) = Sum.map s≤s s≤s (≤-total m n)
187-
188188≤-irrelevant : Irrelevant _≤_
189189≤-irrelevant z≤n z≤n = refl
190190≤-irrelevant (s≤s m≤n₁) (s≤s m≤n₂) = cong s≤s (≤-irrelevant m≤n₁ m≤n₂)
@@ -203,6 +203,11 @@ m ≤? n = map′ (≤ᵇ⇒≤ m n) ≤⇒≤ᵇ (T? (m ≤ᵇ n))
203203_≥?_ : Decidable _≥_
204204_≥?_ = flip _≤?_
205205
206+ ≤-total : Total _≤_
207+ ≤-total m n with m ≤? n
208+ ... | true because m≤n = inj₁ (invert m≤n)
209+ ... | false because m≰n = inj₂ (≰⇒≥ (invert m≰n))
210+
206211------------------------------------------------------------------------
207212-- Structures
208213
@@ -331,9 +336,6 @@ n≤1⇒n≡0∨n≡1 (s≤s z≤n) = inj₂ refl
331336≰⇒> {suc m} {zero} _ = z<s
332337≰⇒> {suc m} {suc n} m≰n = s<s (≰⇒> (m≰n ∘ s≤s))
333338
334- ≰⇒≥ : _≰_ ⇒ _≥_
335- ≰⇒≥ = <⇒≤ ∘ ≰⇒>
336-
337339≮⇒≥ : _≮_ ⇒ _≥_
338340≮⇒≥ {_} {zero} _ = z≤n
339341≮⇒≥ {zero} {suc j} 1≮j+1 = contradiction z<s 1≮j+1
0 commit comments