Skip to content

antoinedenovembre/NTNU_object_detection

Repository files navigation

NTNU EfficientDet training

Introduction

Deep learning project about animal behaviour.

Features

For now, the project includes:

  • EfficientDet model (no backbone) training and saving
  • EfficientDet model (no backbone) evaluation (including metrics and image testing)
  • EfficientNet backbone training and saving
  • EfficientDet with EfficientNet backbone training and saving
  • EfficientDet with EfficientNet backbone evaluation (including metrics and image testing)

Prerequisites

Before you begin, ensure you have met the following requirement:

  • Python 3.10+

Installation

Step-by-step guide on how to install the project:

git clone https://github.com/antoinedenovembre/NTNU_project.git
cd NTNU_project
python install_requirements.py

/!\ Important: You also need to make sure you have the following structure, including the data folder

NTNU_project_light
│   README.md
│   main.py
│   install_requirements.py
│
└───data
│   └───backbone
│   │   │   image1.jpg/png/...
│   │   │   ...
│   │
│   └───effdet
│       └─── train
│       │    └─── annotations
│       │    │    │   annotations.json
│       │    │    │   ...
│       │    │
│       │    └─── images
│       │         │   image1.jpg/png/...
│       │         │   ...
│       │
│       └─── test
│            └─── annotations
│            │    │   annotations.json
│            │    │   ...
│            │
│            └─── images
│                 │   image1.jpg/png/...
│                 │   ...
│
└───efficient_det
│
└───barlow
│
└───utils
│
└───scripts
│
└───documentation
│
└───output

The annotations shall have the following structure

{
  "annotations": [
    {
      "area": 87292,
      "bbox": [
        576,
        98,
        547,
        204
      ],
      "category_id": 6,
      "id": 1, <!-- Should be the number of the annotation -->
      "image_id": 2, <!-- Should be the number of the image -->
      "iscrowd": 0
    },
    ...
    ]
}

Usage

Here is the command to run the project:

python main.py

Documentation

Overall view of the project: Documentation - Overall view

Technical documentation about evaluation metrics and loss function: Documentation - Metrics

Q&As

What PC can be used?

  • Ideally one with a sufficient GPU, like NVIDIA RTX 2080Ti

What OS can be used?

  • Any Linux distro should do the trick, but I recommend using Ubuntu 22.04+

Contributing

This repository is a fork from this repository

Authors and Acknowledgment

Show your appreciation to those who have contributed to the project.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages