Releases: bigbio/mokume
v0.1.0 - First release of the mokume
🎉 mokume v0.1.0 — First Release
We're excited to announce the first official release of mokume, a comprehensive proteomics quantification library for the quantms ecosystem!
What is mokume?
The name comes from mokume-gane (木目金), a Japanese metalworking technique that fuses multiple metal layers into distinctive patterns — similar to how this library melds peptide intensities into unified protein expression profiles.
mokume is the evolution of ibaqpy, now extended to support a broader range of protein quantification methods beyond iBAQ.
✨ Key Features
Multiple Quantification Methods
- iBAQ — Intensity-Based Absolute Quantification
- Top3 / TopN — Average of N most intense peptides
- MaxLFQ — Delayed normalization with parallelization (auto-uses DirectLFQ when available)
- DirectLFQ — Intensity traces with hierarchical alignment (optional)
- Sum — Sum of all peptide intensities
Comprehensive Normalization
- Feature-level normalization (median, mean, IQR)
- Peptide-level normalization (global median, condition median)
- Batch correction via ComBat
Flexible Preprocessing Filters
- Intensity-based filtering (min intensity, CV threshold, quantile)
- Peptide-level filters (length, charge state, modifications, missed cleavages)
- Protein-level filters (contaminants, decoys, FDR, coverage)
- Run/sample QC filters (missing rate, correlation, min features)
- YAML/JSON configuration support with CLI overrides
Additional Capabilities
- TPA (Total Protein Approach) calculation
- ProteomicRuler for copy number and concentration estimation
- AnnData export for single-cell analysis workflows
- QC report generation with visualizations
📦 Installation
# Basic installation
pip install mokume
# With optional dependencies
pip install mokume[directlfq] # DirectLFQ support
pip install mokume[plotting] # Visualization support
pip install mokume[all] # All optional dependencies🚀 Quick Start
CLI Usage
# iBAQ quantification
mokume peptides2protein --method ibaq -f proteome.fasta -p peptides.csv -o proteins.tsv
# MaxLFQ quantification
mokume peptides2protein --method maxlfq --threads 4 -p peptides.csv -o proteins.tsv
# Feature to peptide normalization
mokume features2peptides -p features.parquet -s experiment.sdrf.tsv --nmethod median -o peptides.csvPython API
from mokume.quantification import MaxLFQQuantification
maxlfq = MaxLFQQuantification(min_peptides=2, threads=4)
result = maxlfq.quantify(
peptides,
protein_column="ProteinName",
peptide_column="PeptideSequence",
intensity_column="NormIntensity",
sample_column="SampleID",
)📚 Documentation
Full documentation including API reference, tutorials, and example configurations is available in the README.
🙏 Acknowledgments
This release was made possible by the contributions of:
📄 Citation
If you use mokume in your research, please cite:
Zheng P, Audain E, Webel H, Dai C, Klein J, Hitz MP, Sachsenberg T, Bai M, Perez-Riverol Y. Ibaqpy: A scalable Python package for baseline quantification in proteomics leveraging SDRF metadata. J Proteomics. 2025;317:105440. doi: 10.1016/j.jprot.2025.105440.
📝 License
mokume is released under the MIT License.
Full Changelog: https://github.com/bigbio/mokume/commits/v0.1.0
We welcome feedback, bug reports, and contributions! Please open an issue or pull request on GitHub.