Welcome to the pydough-ce
project! This repository contains the pydough-analytics
toolkit, a powerful system that turns natural language questions into safe, executable analytics.
It combines a custom Domain-Specific Language (DSL) called PyDough with LLM-powered system to create a seamless text-to-analytics workflow.
At its core, this project lets you ask questions of your relational database in plain English. The pipeline handles the heavy lifting:
- Generate Metadata – Reflect your database schema into a PyDough knowledge graph.
- Ask a Question – Phrase your analytics request in natural language (e.g., “Which cities have the highest sales?”).
- Translate to PyDough – The LLM converts the question into the PyDough DSL, a declarative language purpose-built for analytics.
- Execute Safely – PyDough compiles to SQL, runs against your database, and returns a tidy DataFrame.
- Natural language interface – Query data without writing SQL.
- Automatic schema analysis – Works with SQLite, Snowflake, MySQL and PostgSQL.
- Safety by design – PyDough limits execution to declarative analytics, reducing blast radius.
- Developer friendly – Includes a CLI, Python API.
- Extensible – Plug in custom prompts, LLM providers.
Below are concise .env
examples reflecting the two modes we support for both Claude and Gemini and a variant with explicit region.
Do not commit real credentials or API keys to Git. Use placeholders in docs and local
.env
files.
Use ADC + Vertex. No API key required. The SDK will use Vertex if you pass project/location
in code or set GOOGLE_GENAI_USE_VERTEXAI=true
.
# .env — minimal Vertex
GOOGLE_PROJECT_ID="your-gcp-project-id"
GOOGLE_APPLICATION_CREDENTIALS=/abs/path/to/service-account.json
GOOGLE_GENAI_USE_VERTEXAI=true
# Optional: explicit region selection (see #3), defaults noted below
# GOOGLE_REGION="us-east5" # e.g., Claude default region
# GOOGLE_REGION="us-central1" # e.g., Gemini default region
Defaults / notes
- Gemini on Vertex: default region on code if not provided is
us-central1
. - Claude on Vertex: default region on code if not provided is
us-east5
. - You can also use the SDK alt env names:
GOOGLE_CLOUD_PROJECT
/GOOGLE_CLOUD_LOCATION
. - Vertex can also use credentials via gcloud auth application-default login
- Ensure IAM role like
roles/aiplatform.user
and Vertex AI API enabled.
If you set GOOGLE_GENAI_USE_VERTEXAI=false
, the code will use the Google AI Studio (API‑key) SDK for Gemini.
In this mode, GOOGLE_API_KEY
is required, and ADC / project / region are not used by the Gemini client.
# .env — API‑key mode (Gemini via Google AI Studio API)
GOOGLE_API_KEY="your-google-api-key"
GOOGLE_GENAI_USE_VERTEXAI=false
# These may exist in your shell and are harmless here, but are not required by API‑key mode:
# GOOGLE_PROJECT_ID="your-gcp-project-id"
# GOOGLE_APPLICATION_CREDENTIALS=/abs/path/to/service-account.json
# GOOGLE_REGION="us-central1"
Notes
- No IAM or Vertex regional control; intended for quick tests or limited environments.
Set an explicit region that supports the models you plan to use. if you do not set either one of the they have the next default values:
- Gemini →
us-central1
- Claude →
us-east5
# .env — Vertex with explicit region
GOOGLE_PROJECT_ID="your-gcp-project-id"
GOOGLE_REGION="us-east5" # or us-central1, europe-west4, etc., if supported
GOOGLE_APPLICATION_CREDENTIALS=/abs/path/to/service-account.json
GOOGLE_GENAI_USE_VERTEXAI=true
# GOOGLE_API_KEY can be unset in Vertex mode
- Switch between modes using
GOOGLE_GENAI_USE_VERTEXAI
:true
→ Vertex (ADC). RequiresGOOGLE_PROJECT_ID
(+GOOGLE_REGION
optional) and credentials.false
→ API‑key mode for Gemini. RequiresGOOGLE_API_KEY
.
- Claude in this repo runs only via Vertex (ADC), so it needs
project
and a supportedregion
(e.g.,us-east5
).
To make local testing easy, this repo includes a small helper script to download the TPCH demo database.
- Script location:
setup_tpch.sh
- What it does: If the target file already exists, it prints
FOUND
and exits. Otherwise it downloads the SQLite DB. - Where the DB should live:
./data/databases/TPCH.db
(from the repo root). The rest of the docs/CLI examples assume this path.
Run from the repo root:
mkdir -p ./pydough-analytics/data/databases
bash pydough-analytics/setup_tpch.sh ./pydough-analytics/data/databases/TPCH.db
If you don't have wget
, you can use curl
instead:
mkdir -p ./pydough-analytics/data/databases
curl -L https://github.com/lovasoa/TPCH-sqlite/releases/download/v1.0/TPC-H.db -o ./pydough-analytics/data/databases/TPCH.db
Verify the file is present:
ls -lh ./pydough-analytics/data/databases/TPCH.db
New-Item -ItemType Directory -Force -Path .\pydough-analytics\data\databases | Out-Null
Invoke-WebRequest -Uri https://github.com/lovasoa/TPCH-sqlite/releases/download/v1.0/TPC-H.db -OutFile .\pydough-analytics\data\databases\TPCH.db
- Python 3.10 or newer (3.11 recommended).
- SQLite database file to introspect.
- PyDough 1.0.10 or newer.
Make sure to use the following environment setup when running the app.
Here is the full shell sequence. Replace /path/to/pydough-ce
with your clone path.
cd /path/to/pydough-ce
rm -rf .venv
python -m venv .venv
source .venv/bin/activate
python -m pip install --upgrade pip
python -m pip install -e pydough-analytics
export PATH="$(pwd)/.venv/bin:$PATH"
hash -r
pydough-analytics --version
Run all of the next commands from the pydough-analytics
folder (the folder that contains data/
, docs/
, samples/
, src/
, etc.).
Quick check:
ls data
# → databases metadata metadata_markdowns prompts
We keep project artifacts in ./data/
for consistency:
- Database (SQLite):
./data/databases/TPCH.db
- Metadata JSON:
./data/metadata/Tpch_graph.json
- Metadata Markdown:
./data/metadata_markdowns/Tpch.md
pydough-analytics generate-json --url sqlite:///data/databases/TPCH.db --graph-name tpch --json-path ./data/metadata/Tpch_graph.json
This inspects the SQLite file and creates a metadata graph definition under data/metadata/Tpch_graph.json
.
pydough-analytics generate-md --graph-name tpch --json-path ./data/metadata/Tpch_graph.json --md-path ./data/metadata_markdowns/Tpch.md
The Markdown file provides a human-friendly overview of the metadata: collections, properties, and relationships.
Run natural-language questions on your dataset. The PyDough code is always printed; you can optionally include SQL, a DataFrame preview, and an explanation. The CE default is Google / Gemini 2.5 Pro.
pydough-analytics ask --question "Give me the name of all the suppliers from the United States" --url sqlite:///data/databases/TPCH.db --db-name tpch --md-path ./data/metadata_markdowns/Tpch.md --kg-path ./data/metadata/Tpch_graph.json --show-sql --show-df --show-explanation
Notes:
--db-name
should match the--graph-name
used during metadata generation (here:TPCH
).- To switch providers (e.g., Anthropic), pass a valid provider/model for your integration:
--provider anthropic --model claude-sonnet-4-5@20250929
- Use
--rows
to control how many DataFrame rows are displayed (default: 20).
python -m pip install pytest
python -m pip install pytest-mock
pytest -q tests
With these steps you now have the full CE pipeline: SQLite DB → JSON metadata graph → Markdown documentation → LLM Ask.
/
│
├── pydough-analytics/ # Core Python package.
│ ├── data/ # Sanmple metadata files.
│ ├── docs/ # Additional guides.
│ ├── samples/ # Sample code with notebooks.
│ ├── src/ # Library source code.
│ ├── tests/ # Unit and integration tests.
│ └── README.md # In-depth package documentation.
└── README.md # You are here!
PyDough is a Pythonic DSL designed for the LLM to emit—and for you to read—concise analytics logic. Typical patterns include filtering, aggregation, and ranking.
# Top 3 sales by amount
result = sales.CALCULATE(city, amount).TOP_K(3, by=amount.DESC())
You can check the full PyDough repo and documentation here: https://github.com/bodo-ai/PyDough/tree/main
We welcome ideas and contributions. Current focus areas include:
- New version with a mcp server.
- Support for more databases.