CVQP is a Python library with fast, scalable methods for solving large-scale CVaR-constrained quadratic programs and Euclidean projection onto CVaR constraints (or equivalent sum-of-k-largest constraints). These methods handle problems where standard solvers are prohibitively slow or fail. For details, see our paper.
From PyPI:
pip install cvqp
From source:
git clone https://github.com/cvxgrp/cvqp.git
cd cvqp
poetry install
poetry run pip install -e .
CVQP solves problems of the form
where
import numpy as np
from cvqp import solve_cvqp
# Problem data
np.random.seed(42)
n, m = 10, 100
P = np.eye(n) * 0.1 # Quadratic cost matrix
q = np.ones(n) * -0.1 # Linear cost vector
A = np.random.randn(m, n) * 0.2 + 0.1 # CVaR constraint matrix
B = np.eye(n) # Box constraint matrix
l = -np.ones(n) # Lower bounds
u = np.ones(n) # Upper bounds
beta = 0.9 # CVaR confidence level
kappa = 0.1 # CVaR limit
results = solve_cvqp(P=P, q=q, A=A, B=B, l=l, u=u,
beta=beta, kappa=kappa, verbose=True)
print(f"Optimal value: {results.value:.6f}")
print(f"Solution: {results.x}")
Project a vector
from cvqp import proj_cvar
import numpy as np
# Create a vector representing scenario losses
v = np.array([4.0, 1.0, 6.0, 2.0, 5.0, 3.0, 7.0])
beta = 0.8 # Confidence level (80%)
kappa = 4.5 # CVaR threshold
x = proj_cvar(v, beta, kappa)
# Compute CVaR at confidence level beta
def cvar(losses, beta):
sorted_losses = sorted(losses, reverse=True)
k = int((1 - beta) * len(losses))
return sum(sorted_losses[:k]) / k
print(f"Original losses: {v}")
print(f"Projected losses: {x}")
print(f"Original CVaR: {cvar(v, beta):.2f}")
print(f"Projected CVaR: {cvar(x, beta):.2f}")
CVaR constraints are equivalent to sum-of-k-largest constraints. For a vector
from cvqp import proj_sum_largest
import numpy as np
# Create a vector to project
v = np.array([6.0, 2.0, 5.0, 4.0, 1.0])
k = 2 # Number of largest elements to constrain
d = 7.0 # Upper bound on sum
x = proj_sum_largest(v, k, d)
print(f"Original vector: {v}")
print(f"Projected vector: {x}")
print(f"Sum of {k} largest: {sum(sorted(x, reverse=True)[:k]):.2f}")
See benchmarks/
for benchmark results against MOSEK and Clarabel on a suite of large-scale problems.
If you use CVQP in your research, please cite:
@misc{cvqp2025,
title={An Operator Splitting Method for Large-Scale {CVaR}-Constrained Quadratic Programs},
author={Luxenberg, Eric and P\'erez-Pi\~neiro, David and Diamond, Steven and Boyd, Stephen},
year={2025},
eprint={2504.10814},
archivePrefix={arXiv},
primaryClass={math.OC},
url={https://arxiv.org/abs/2504.10814}
}