Release v0.17.5
This release fixes issues when installing d2l package and running d2l notebooks on Google Colab with Python 3.7 and updates PyTorch & TensorFlow to their respective latest versions.
More concretely, this release includes the following upgrades/fixes:
- Update TensorFlow==2.8.0 (#2055)
- Update PyTorch: torch==1.11.0 & torchvision==0.12.0 (#2063)
- Rollback NumPy==1.21.5 & Support Python>=3.7 (#2066)
- Fix MXNet plots; NumPy auto coercion & Unpin matplotlib==3.4 dependency (#2078)
- Fix the broken download link for MovieLens dataset (#2074)
- Fix iPython deprecation warning of set_matplotlib_formats (#2065)
- Fix Densenet PyTorch implementation using nn.AdaptiveAvgPool2d (f6b1dd0)
- Fix the hotdog class in section Fine Tuning for imagenet, which is number 934 instead of 713 (#2009)
- Use
reduction=none
in PyTorch loss fortrain_epoch_ch3
(#2007) - Fix argument
test_feature
->test_features
oftrain_and_pred
in kaggle house price section (#1982) - Fix TypeError: can’t convert CUDA tensor to numpy, explicitly moving torch tensor to cpu before plotting (#1966)