探索 通义千问 Api 在 langchain 中的使用 参考借鉴 openai langchain 的实现 目前在个人项目工具中使用
NOTE: langchian 已经带有了一个合并的 Tongyi
实现, 当时写这个项目的时候 Tongyi 的功能还不够完善,
不过随着后续的迭代应该已经没问题了 建议优先考虑通过以下方式使用
from langchain_community.llms.tongyi import Tongyi
from langchain_community.chat_models.tongyi import ChatTongyi
pip 会同时安装依赖库: Langchain 和 Dashscope-SDK
pip install langchain-qianwen
Clone 项目 手动安装
git clone ... && cd langchain_qianwen
pip install -r requirements.txt
# 建议运行 pytest 单元测试确认功能运行正常,防止依赖库出现 breaking change
pip install pytest
pytest
使用前置条件:
- 了解 Langchain langchain文档
- 在阿里云开发参考文档 申请并创建API-KEY
- 设置 api_key 环境变量
export DASHSCOPE_API_KEY="YOUR_DASHSCOPE_API_KEY"
from langchain.prompts import PromptTemplate
from langchain_qianwen import Qwen_v1
if __name__ == "__main__":
jock_template = "给我讲个有关 {topic} 的笑话"
prompt = PromptTemplate.from_template(jock_template)
llm = Qwen_v1(
model_name="qwen-turbo",
temperature=0.18,
streaming=True,
)
chain = prompt | llm
for s in chain.stream({"topic": "产品经理"}):
print(s, end="", flush=True)
p.s. 目前 llm 模型 (Qwen_v1) 可以使用 AsyncIteratorCallbackHandler, chatmodel(ChatQwen_v1 待更新 这个我还用不到...)
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain_qianwen import Qwen_v1
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
import asyncio
async def use_async_handler(input):
handler = AsyncIteratorCallbackHandler()
llm = Qwen_v1(
model_name="qwen-turbo",
streaming=True,
callbacks=[handler],
)
memory = ConversationBufferMemory()
chain = ConversationChain(
llm=llm,
memory=memory,
verbose=True,
)
asyncio.create_task(chain.apredict(input=input))
return handler.aiter()
async def async_test():
async_gen = await use_async_handler("hello")
async for i in async_gen:
print(i)
if __name__ == "__main__":
asyncio.run(async_test())
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_qianwen import ChatQwen_v1
from langchain.schema import (
HumanMessage,
)
if __name__ == "__main__":
chat = ChatQwen_v1(
model_name="qwen-turbo",
streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
)
chat([HumanMessage(content="举例说明一下 PHP 为什么是世界上最好的语言")])
from langchain.agents import load_tools, AgentType, initialize_agent
from langchain_qianwen import Qwen_v1
if __name__ == "__main__":
llm = Qwen_v1(
model_name="qwen-plus",
)
## 需要去 serpapi 官网申请一个 api_key
tool_names = ["serpapi"]
tools = load_tools(tool_names)
agent = initialize_agent(tools=tools,
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True)
agent.run("今天北京的天气怎么样?")
from langchain.embeddings.dashscope import DashScopeEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.document_loaders import DirectoryLoader
from langchain_qianwen import Qwen_v1
if __name__ == "__main__":
llm = Qwen_v1(
model_name="qwen-turbo",
)
loader = DirectoryLoader("./assets", glob="**/*.txt")
document = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=2048, chunk_overlap=0)
texts = text_splitter.split_documents(document)
embeddings = DashScopeEmbeddings(
model="text-embedding-v1",
)
print(f"text length: {len(texts)}")
# 使用 embedding engion 将 text 转换为向量
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
# qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
query = "文章中的工厂模式使用例子有哪些??"
rsp = qa.run({"query": query})
print(rsp)
更多使用请查看 langchain 官方文档 和 examples 目录