This is the software used for the following publication:
Weakly-Supervised Grammar-Informed Bayesian CCG Parser Learning
Dan Garrette, Chris Dyer, Jason Baldridge, and Noah A. Smith
In Proceedings of AAAI 2015
A Supertag-Context Model for Weakly-Supervised CCG Parser Learning
Dan Garrette, Chris Dyer, Jason Baldridge, and Noah A. Smith
In Proceedings of CoNLL 2015
$ get clone [email protected]:dhgarrette/2015-ccg-parsing.git
$ cd 2015-ccg-parsing
Put the English, Chinese, and Italian data into the following directories:
data/ccgbank
data/ccgbank-chinese
data/ccgbank-italian
The files should be arranged as follows:
$ ls data/ccgbank/AUTO
00 02 04 06 08 10 12 14 16 18 20 22 24
01 03 05 07 09 11 13 15 17 19 21 23
$ ls data/ccgbank-chinese/AUTO
00 02 04 06 08 10 20 22 24 26 28 30
01 03 05 07 09 11 21 23 25 27 29 31
$ ls data/ccgbank-italian/pro
civil_law.pro.txt jrc_acquis.pro.txt newspaper.pro.txt
First, compile the code and generate the run script:
$ ./compile
Then run:
$ target/start dhg.ccg.run.Parse2015Run [options]
--model: The model to use. Options: (no default)pcfg: for the pcfg model (see AAAI-2015 paper)scg: for the supertag-context model (see CoNLL-2015 paper)
--learning: The learning algorithm to use to train the model. Options: {mcmc}. Default:mcmc.--additional-rules: Additional CCG rules to be allowed by the parser (comma-separated). Example:FC,BX,FC2,BX2. Defaultx(meaning no additional rules).--lang: The language of the CCGBank to use. Options: {en,ch,it}. Default:en.--max-sent-len: The maximum sentence length allowed (filter all sentence longer than this). Options: an integer orallfor no limit. Default:all.--td-tok: The maximum number of tokens to be read when building the tag dictionary. Options: an integer (following an integer withkwill expand to000; e.g.10kbecomes10000) orallfor no limit. Default:all.--train-sent: The maximum number of sentences to be used for training. Options: an integer orallfor no limit. Default:all.--test-sent: The maximum number of sentences to be used for testing. Options: an integer orallfor no limit. Default:all.--sampling-iterations: The number of MCMC sampling iterations to run. Default:500.--burnin-iterations: The number of MCMC burn-in iterations to run. Default:0.--alpha-root: See paper for details. Default:1.0.--alpha-biny: See paper for details. Default:100.0.--alpha-unry: See paper for details. Default:100.0.--alpha-term: See paper for details. Default:10000.0.--alpha-prod: See paper for details. Default:100.0.--alpha-cntx: See paper for details. Only relevant for--model scg. Default:1000.0.--root-init: Root parameter initializer. Options:uniformcatprior: use the grammar-defined category prior.tdecatprior: use the grammar-defined category prior, with atomic category probabilities estimated using the tag dictionary and raw data. DEFAULT.
--nt-prod-init: Nonterminal production parameter initializer (for both binary and unary). Options:uniform.catprior: use the grammar-defined category prior.tdecatprior: use the grammar-defined category prior, with atomic category probabilities estimated using the tag dictionary and raw data. DEFAULT.
--term-prod-init: Terminal production parameter initializer (for both binary and unary). Options:uniform.tdentry: Use the tag dictionary and raw data to estimate terminal (word) probabilities for each supertag. DEFAULT.
--tr-init: Context production parameter initializer (for both left and right contexts). Only relevant for--model scg. Options:uniform,tdentry(use the tag dictionary and raw data to estimate transition probabilities),combine-uniform(use CCG supertag combinability mixed withuniform),combine-tdentry(use CCG supertag combinability mixed withtdentry). DEFAULT.
--pterm: See paper for details. Default:0.7.--pmod: See paper for details. Default:0.1.--pfwd: See paper for details. Default:0.5.--comb-tr-mass: Amount of probability mass devoted to "combinable" contexts (calledsigma(σ) in the CoNLL-2015 paper). Only relevant for--model scg. Default:0.85.--td-cutoff: Exclude tag dictionary entries that occur with less than this proportion in the TD-training corpus. Default:0.0.--max-accept-tries: Number of samples drawn for each sentence in each iteration. Only relevant for--model scg. Default:1.--output-file: A file where the parsed trees of the test sentences should be written. Default: do not write out trees.--train-termdel: Allow terminal deletion from a training sentence when a parse is not found. Choices {false,true}. Default:false.--test-termdel: Allow terminal deletion from a test sentence when a parse is not found. Choices {false,true}. Default:false.--max-train-tok: The maximum number of tokens to be read for the training data. Options: an integer (following an integer withkwill expand to000; e.g.10kbecomes10000) orallfor no limit. Default:all.--mcmc-output-count-file: File where additional data should be written. Default: do not write out this information.