Skip to content

fabiannagel/schnax

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

build

schnax: SchNet in JAX and JAX-MD

This is a re-implementation of the SchNet neural network architecture in JAX, haiku, and JAX-MD. schnax is intended as a drop-in replacement for the original pytorch implementation, allowing the use of trained weights obtained with SchNetPack.

References

  • [1] K.T. Schütt. P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, K.-R. Müller.
    SchNet: A continuous-filter convolutional neural network for modeling quantum interactions. Advances in Neural Information Processing Systems 30, pp. 992-1002 (2017) link

  • [2] K.T. Schütt. P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, K.-R. Müller.
    SchNet - a deep learning architecture for molecules and materials. The Journal of Chemical Physics 148(24), 241722 (2018) 10.1063/1.5019779

  • [3] K.T. Schütt, P. Kessel, M. Gastegger, K. Nicoli, A. Tkatchenko, K.-R. Müller. SchNetPack: A Deep Learning Toolbox For Atomistic Systems. J. Chem. Theory Comput. 10.1021/acs.jctc.8b00908 arXiv:1809.01072. (2018)

About

An implementation of SchNet in JAX and JAX-MD.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published