Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
344 changes: 344 additions & 0 deletions 2025-10-09-invdes-seminar/00_setup_guide.ipynb

Large diffs are not rendered by default.

556 changes: 556 additions & 0 deletions 2025-10-09-invdes-seminar/01_bayes.ipynb

Large diffs are not rendered by default.

523 changes: 523 additions & 0 deletions 2025-10-09-invdes-seminar/02_adjoint.ipynb

Large diffs are not rendered by default.

1,032 changes: 1,032 additions & 0 deletions 2025-10-09-invdes-seminar/03_sensitivity.ipynb

Large diffs are not rendered by default.

441 changes: 441 additions & 0 deletions 2025-10-09-invdes-seminar/04_adjoint_robust.ipynb

Large diffs are not rendered by default.

427 changes: 427 additions & 0 deletions 2025-10-09-invdes-seminar/05_robust_comparison.ipynb

Large diffs are not rendered by default.

474 changes: 474 additions & 0 deletions 2025-10-09-invdes-seminar/06_measurement_calibration.ipynb

Large diffs are not rendered by default.

132 changes: 132 additions & 0 deletions 2025-10-09-invdes-seminar/optim.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
"""Utility routines for functional-style optimization in the tutorial notebooks.

The helpers here avoid mutating inputs so they play nicely with autograd.
"""

import autograd.numpy as np
from autograd.misc import flatten


def clip_params(params, bounds):
"""Clip a parameter dictionary according to per-key bounds.

Parameters
----------
params : dict[str, np.ndarray]
Dictionary mapping parameter names to array values.
bounds : dict[str, tuple[float | None, float | None]]
Lower and upper limits for each parameter. Missing keys default to no
clipping. ``None`` disables a bound on that side.

Returns
-------
dict[str, np.ndarray]
New dictionary with values clipped to the requested interval.
"""
clipped = {}
for key, value in params.items():
lo, hi = bounds.get(key, (None, None))
lo_val = -np.inf if lo is None else lo
hi_val = np.inf if hi is None else hi
clipped[key] = np.clip(value, lo_val, hi_val)
return clipped


def _flatten(tree):
"""Return a flat representation of a pytree and its inverse transform."""
flat, unflatten = flatten(tree)
return np.array(flat, dtype=float), unflatten


def init_adam(params, lr=1e-2, beta1=0.9, beta2=0.999, eps=1e-8):
"""Initialize Adam optimizer state for a parameter pytree.

Parameters
----------
params : dict[str, np.ndarray]
Current parameter values used to size the optimizer state.
lr : float = 1e-2
Learning rate applied to each step.
beta1 : float = 0.9
Exponential decay applied to the first moment estimate.
beta2 : float = 0.999
Exponential decay applied to the second moment estimate.
eps : float = 1e-8
Numerical stabilizer added inside the square-root denominator.

Returns
-------
dict[str, object]
Dictionary holding the Adam accumulator vectors and hyperparameters.
"""
flat_params, unflatten = _flatten(params)
state = {
"t": 0,
"m": np.zeros_like(flat_params),
"v": np.zeros_like(flat_params),
"unflatten": unflatten,
"lr": lr,
"beta1": beta1,
"beta2": beta2,
"eps": eps,
}
return state


def adam_update(grads, state):
"""Compute Adam parameter updates from gradients and state.

Parameters
----------
grads : dict[str, np.ndarray]
Gradient pytree with the same structure as the parameters.
state : dict[str, object]
Optimizer state returned by :func:`init_adam`.

Returns
-------
updates : dict[str, np.ndarray]
Parameter deltas that should be subtracted from the current values.
new_state : dict[str, object]
Updated optimiser state after incorporating the gradients.
"""
g_flat, _ = _flatten(grads)
t = state["t"] + 1

beta1 = state["beta1"]
beta2 = state["beta2"]
m = (1 - beta1) * g_flat + beta1 * state["m"]
v = (1 - beta2) * (g_flat * g_flat) + beta2 * state["v"]

m_hat = m / (1 - beta1**t)
v_hat = v / (1 - beta2**t)
updates_flat = state["lr"] * (m_hat / (np.sqrt(v_hat) + state["eps"]))

new_state = {
**state,
"t": t,
"m": m,
"v": v,
}
updates = state["unflatten"](updates_flat)
return updates, new_state


def apply_updates(params, updates):
"""Apply additive updates to a parameter pytree.

Parameters
----------
params : dict[str, np.ndarray]
Original parameter dictionary.
updates : dict[str, np.ndarray]
Update dictionary produced by :func:`adam_update`.

Returns
-------
dict[str, np.ndarray]
New dictionary with ``updates`` subtracted element-wise.
"""
p_flat, unflatten = _flatten(params)
u_flat, _ = _flatten(updates)
return unflatten(p_flat - u_flat)
73 changes: 73 additions & 0 deletions 2025-10-09-invdes-seminar/results/gc_adjoint_best.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
{
"widths_si": [
0.48262618509355615,
0.5207667397076212,
0.45559630741287455,
0.46361599591364383,
0.44415937806339206,
0.4725359297284237,
0.4897650205171269,
0.43401055421044743,
0.5470685569556949,
0.36090417995022805,
0.35112952011499815,
0.25182851621035,
0.2287991538613288,
0.21772272282716135,
0.5871457399636976
],
"gaps_si": [
0.6608377498745214,
0.7153002966535659,
0.6755416250853287,
0.762711911245917,
0.6957603543580327,
0.6485980725930465,
0.7270242877193821,
0.6569877864900205,
0.7434394276954258,
0.8910689853995577,
0.92010444487145,
0.887662287039533,
0.8439724990649012,
0.7880932609023489,
0.7992416233438039
],
"widths_sin": [
0.7891411537966333,
0.6441362131696193,
0.5221408734233975,
0.31370712049190075,
0.6036396259080945,
0.5709134822507435,
0.6102929883304251,
0.5666814968867978,
0.5911545201167835,
0.5511240455381605,
0.6759490391650566,
0.424347404772533,
0.4917036091769178,
0.5990651442832533,
0.7041841301345496
],
"gaps_sin": [
0.4541255482246594,
0.4802605152344745,
0.3,
0.4914339475589058,
0.5480930702315364,
0.6026168524939672,
0.6561924161853298,
0.5934806415337143,
0.478494886109227,
0.44772190354423175,
0.7331937769153588,
0.6299485623886972,
0.48849470041329063,
0.35636407607194925,
0.5135103145142313
],
"first_gap_si": -0.6720330444742626,
"first_gap_sin": 0.5035568088634116,
"target_power": 0.5676497430872463
}
73 changes: 73 additions & 0 deletions 2025-10-09-invdes-seminar/results/gc_adjoint_robust_best.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
{
"widths_si": [
0.4920388608057116,
0.5269663382801457,
0.47051077631906724,
0.45640313960745277,
0.4463409120598345,
0.479710427467526,
0.4926663437517315,
0.44457287894940967,
0.545014746020923,
0.36598776983110565,
0.3329813653191155,
0.2468853437833761,
0.23766189386793363,
0.23602095263192163,
0.5993116787228173
],
"gaps_si": [
0.6594384762369605,
0.7075580062177993,
0.6811015769993951,
0.7457468608769762,
0.6946555894542846,
0.6444157147446795,
0.7121732105630795,
0.6468550006640721,
0.7334476826411184,
0.8848483116592654,
0.926354310270442,
0.9035257883720766,
0.8629975364993915,
0.8031133570655837,
0.7992416233438039
],
"widths_sin": [
0.8194008890879501,
0.654976203326419,
0.5154062669153403,
0.28937104202011993,
0.5797843891332557,
0.5547076037062613,
0.6077917250899648,
0.5628056343171124,
0.5933617318869786,
0.548751792878745,
0.6887370577523546,
0.41013832947358364,
0.4913432960091517,
0.6137520507037625,
0.7155681547704924
],
"gaps_sin": [
0.45753036557675575,
0.5098708096717812,
0.3,
0.49309132198664574,
0.5499656317615206,
0.6082880193683878,
0.6647065648783161,
0.6049556315727266,
0.48280853554230346,
0.45039397074013265,
0.7420847046346506,
0.6328210425726839,
0.5020955912266114,
0.3587164271526588,
0.5135103145142313
],
"first_gap_si": -0.6811767256145679,
"first_gap_sin": 0.4802966569812285,
"etch_bias_modeled": 0.02
}
9 changes: 9 additions & 0 deletions 2025-10-09-invdes-seminar/results/gc_bayes_opt_best.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
{
"width_si": 0.3983180007432449,
"gap_si": 0.7992416233438039,
"width_sin": 0.5781958117277934,
"gap_sin": 0.5135103145142313,
"first_gap_si": -0.6933388041768698,
"target_power": 0.3425821844561507,
"coupling_loss_db": 4.652352257066546
}
Loading